• Title/Summary/Keyword: $NO_2$ inhibition

Search Result 2,117, Processing Time 0.038 seconds

The Effects of Congeners of Clofibrate on Inhibition of Rabbit Platelet Aggregation (Clofibrate의 유도체가 토끼의 혈소판 응집에 미치는 영향)

  • 홍충만;장동덕;신동환;조재천;조명행
    • Biomolecules & Therapeutics
    • /
    • v.3 no.2
    • /
    • pp.132-135
    • /
    • 1995
  • Several clofibrate congeners (bezafibrate, gemfibrozil and fenofibrate) were investigated the relationship between effects on the aggregation induced by aggregating agents (thrombin, arachidonic acid, ADP and collagen) and arachidonic acid metabolism in rabbit homogenized platelet. In platelet aggregation study, all drugs produced no significant inhibition (data not shown) in arachidonic acid and thrombin. Also platelet aggregation by ADP was not changed in bezafibrate and Inhibited dose dependently in fenofibrate and gemfibrozil. Platelet aggregation by collagen was inhibited dose dependently and significantly (from p<0.5 to p<0.001) by gemfibrozil and fenofibrate at concentrations between 20 and 400 $\mu$M. In arachidonic acid metabolism study, synthesis of thromboxane $B_2$ was not changed in rabbit platelet membranes and that of prostaglandin $E_2$ and $F_{2{\alpha}}$ was slightly increased by all drugs. It was concluded that clofibrate congeners inhibited ADP and collagen induced rabbit platelet aggregation and inhibition of collagen induced aggregation was probably mediated through some mechanism (pathway) other than arachidonic acid metabolism, judging from arachidonic acid metabolites (thromboxane $B_2$, prostaglandin $E_2$and $F_{ 2{\alpha}}$) synthesis in rabbit homogenized Platelet.

  • PDF

Inhibition of Nitric Oxide Production from lipopolysaccharide-Treated RAW 264.7 Cells by Synthetic Flavones:Structure-Activity Relationship and Action Mechanism

  • Kim, Soo-Jin;Park, Hae-Il;Kim, Hyun-Pyo
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.937-943
    • /
    • 2004
  • Recent investigations have shown that certain flavonoids, especially flavone derivatives, inhibit nitric oxide (NO) production by inducible NO synthase (iNOS) in macrophages, which contrib-ute their anti-inflammatory action. For the purpose of finding the optimized chemical structures of flavonoids that inhibit NO production, various A- and B-ring substituted flavones were syn-thesized and evaluated for their inhibitory activity using lipopolysaccharide-treated RAW 264.7 cells. It was found that the optimal chemical structures were A-ring 5,7-dihydroxyflavones hav-ing the B-ring 2',3'-dihydroxy or 3',4'-dihydroxy or 3',4'-hydroxy/methoxy (methoxy/hydroxy) groups. These structurally optimized compounds were revealed to be down-regulators of iNOS induction, but not direct iNOS inhibitors. Of these derivatives that were evaluated, 2',3',5,7-tet-rahydroxyflavone and 3',4',5,7-tetrahydroxyflavone (Iuteolin) showed the strongest inhibition. The $IC_{50}$/ values for these compounds were 19.7 and 17.1 11M, respectively. Therefore, these compounds may have a potential as new anti-inflammatory agents.

Inhibitors of Nitric Oxide Syntheasis from Phellinus pini in Murine Macrophages (낙엽송층버섯의 Nitric Oxide 생성저해 물질)

  • Jang, Hyun-Jin;Kim, Ahn-Keun;Pyo, Myoung-Yun;Yang, Ki-Sook
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.430-434
    • /
    • 2007
  • The anti-inflammatory activity of fruit body of Phellinus pini was investigated by activity-guided fractionation. From the screening of each fraction for the inhibitory activity of NO production in lipopolysaccaride (LPS) activated RAW 264.7 cells, methanol extract and its hexane soluble fraction of Phellinus pini exhibited inhibition of NO production compared with LPS control without toxicity. The hexane soluble fraction showed dose-dependent inhibition of NO production. The active hexane fraction was repeatedly chromatographed over silica gel, ergosta-7,24(28)-dien-3-ol(1) and ergosterol peroxide (2) were isolated and identified. Ergosterol derivatives were inhibited NOS activation, $IC_{50}$ of them were $18.9{\pm}3.9{\mu}M$ (1) and $20.4{\pm}4.5{\mu}M$ (2).

Studies on the Immuno Modulating Acitivity of Fermented Artemisiae Argyi Folium Extract (애엽(艾葉) 발효 추출물의 면역활성에 관한 연구)

  • Han, Hyo-Sang;Park, Wan-Su;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.23 no.3
    • /
    • pp.103-112
    • /
    • 2008
  • Objectives : This research aimed to study the cytotoxicity and immuno modulating activity of fermented Artemisia argyi Lev. et Vant.(Compositae). Methods : Effect of fermented Artemisiae Argyi Folium extracts, which were fermented by Sacchromyces cerevisiae STV89(AFS), on cell viability, generation of ROS within cells, generation of NO and the level of cytokines($TNF-{\alpha}$ and IL-6) was measured using mouse macrophage RAW 264.7 cell. Results : 1. Result of MTT assay conducted to verify the cytotoxicity of fermented Artemisiae argyi folium extract illustrated that, when fermented Artemisiae argyi folium extract was processed for each concentration, there was no excessive induction of cytoxicity in the RAW 264.7 cell. 2. Fermented Artemisiae Argyi Folium extract increased the generation of H2O2 within RAW 264.7 cell as well as significantly increased inhibition of generation of H2O2 in macrophage induced by LPS. 3. Fermented Artemisiae Argyi Folium extract inhibited generation of NO in RAW 264.7 cell, and significantly inhibited increase in generation of NO of macrophage induced by LPS. 4. Fermented Artemisiae Argyi Folium extract, AFS has significantly reduced the increase in the generation of $TNF-{\alpha}$ above 10 ${\mu}g/mL$. 5. Fermented Artemisiae Argyi Folium extract, AFS has significantly reduced the increase in generation of IL-6 above 50 ${\mu}g/mL$. Conclusions : AFS fermented extract produced from Artemisiae Argyi Flium, have increased generation of ROS and reduced generation of NO in RAW 264.7 cell without excessively inducing cytotoxicity of RAW 264.7 cell. In addition, they displayed significant immuno modulating activities including inhibition of generation of $TNF-{\alpha}$ and IL-6 in macrophage, induced by LPS.

  • PDF

Hydrogen Peroxide-induced Alterations in Na+-phosphate Cotransport in Renal Epithelial Cells

  • Jung, Soon-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.2
    • /
    • pp.83-92
    • /
    • 2009
  • This study was undertaken to examine the effect of oxidants on membrane transport function in renal epithelial cells. Hydrogen peroxide ($H_2O_2$) was used as a model oxidant and the membrane transport function was evaluated by measuring $Na^+$-dependent phosphate ($Na^+$-Pi) uptake in opossum kidney (OK) cells. $H_2O_2$ inhibited $Na^+$-Pi uptake in a dose-dependent manner. The oxidant also caused loss of cell viability in a dose-dependent fashion. However, the extent of inhibition of the uptake was larger than that in cell viability. $H_2O_2$ inhibited $Na^+$-dependent uptake without any effect on $Na^+$-independent uptake. $H_2O_2$-induced inhibition of $Na^+$-Pi uptake was prevented completely by catalase, dimethylthiourea, and deferoxamine, suggesting involvement of hydroxyl radical generated by an iron-dependent mechanism. In contrast, antioxidants Trolox, N,N'-diphenyl-p-phenylenediamine, and butylated hydroxyanisole did not affect the $H_2O_2$ inhibition. Kinetic analysis indicated that $H_2O_2$ decreased Vmax of $Na^+$-Pi uptake with no change in the Km value. Phosphonoformic acid binding assay did not show any difference between control and $H_2O_2$-treated cells. $H_2O_2$ also did not cause degradation of $Na^+$-Pi transporter protein. Reduction in $Na^+$-Pi uptake by $H_2O_2$ was associated with ATP depletion and direct inhibition of $Na^+$-$K^+$-ATPase activity. These results indicate that the effect of $H_2O_2$ on membrane transport function in OK cells is associated with reduction in functional $Na^+$-pump activity. In addition, the inhibitory effect of $H_2O_2$ was not associated with lipid peroxidation.

  • PDF

Effect of t-butylhydroperoxide on $Na^+-dependent$ Glutamate Uptake in Rabbit Brain Synaptosome

  • Lee, Hyun-Je;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.367-376
    • /
    • 1997
  • The effect of an organic peroxide, t-butylhydroperoxide (t-BHP), on glutamate uptake was studied in synaptosomes prepared from cerebral cortex. t-BHP inhibited the $Na^+-dependent$ glutamate uptake with no change in the $Na^+-independent$ uptake. This effect of t-BHP was not altered by addition of $Ca^{2+}$ channel blockers (verapamil, diltiazem and nifedipine) or $PLA_2$ inhibitors (dibucaine, butacaine and quinacrine). However, the effect was prevented by iron chelators (deferoxamine and phenanthroline) and phenolic antioxidants (N,N'-diphenyl-phenylenediamine, butylated hydroxyanisole, and butylated hydroxytoluene). At low concentrations (<1.0 mM), t-BHP inhibited glutamate uptake without altering lipid peroxidation. Moreover, a large increase in lipid peroxidation by $ascorbate/Fe^{2+}$ was not accompanied by an inhibition of glutamate uptake. The impairment of glutamate uptake by t-BHP was not intimately related to the change in $Na^+-K+-ATPase$ activity. These results suggest that inhibition of glutamate uptake by t-BHP is not totally mediated by peroxidation of membrane lipid, but is associated with direct interactions of glutamate transport proteins with t-BHP metabolites. The $Ca^{2+}$ influx through $Ca^{2+}$ channel or $PLA_2$ activation may not be involved in the t-BHP inhibition of glutamate transport.

  • PDF

[$Zn^{2+}$ Modulates the Responses of Rat Dorsal Horn Neuron to C-Fiber Stimulation and Excitatory Amino Acids

  • Ahn, Chang-Hoon;Shin, Hong-Kee;Kim, Jin-Hyuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.455-461
    • /
    • 2000
  • Zinc contained in the neurons of central nervous system is activity-dependently released and then attenuates NMDA (N-methyl-D-aspartate)-induced neurotoxicity while augmenting non-NMDA-induced neurodegeneration. Zinc also has been reported to produce antinociceptive action on the inflammation- and nerve injury-induced hyperalgesia in the behavioral test. In this study, we investigated the effects of zinc on the responses of dorsal horn cells to NMDA, kainate and graded electrical stimulation of C-fibers. In the majority of WDR cells (70.6%), zinc current-dependently inhibited WDR cell responses to NMDA and in the remaining cells, produced biphasic responses; excitation followed by inhibition. Zinc augmented the responses of WDR cells to iontophoretical application of kainate. The dominant effect of $Zn^{2+}$ on the responses of WDR cells to C-fiber stimulation was excitatory, but inhibition, excitation-inhibition and no change of the responses to C-fiber stimulation were induced. $Ca^{2+}-EDTA$ antagonized the excitatory or inhibitory effects of $Zn^{2+}$ on the WDR cell responses. These experimental findings suggest that $Zn^{2+}$ modulates the transmission of sensory information in the rat spinal cord.

  • PDF

The Action of ATP on Phospholipase $A_2$Activation in C6 Cells (C6세포에서 phospholipase $A_2$활성에 대한 ATP의 작용)

  • 심상수;김명준;윤신희;김창종;조양혁
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.413-418
    • /
    • 2001
  • To investigate action of ATP on ischemia-induced brain injury, we measured phospholipase $A_2$activity and nitric oxide (NO) production in C6 cells. ATP alone did not have any influence on phospholipase $A_2$activity but increased NO production. Glutamate (1 mM) significantly increased phospholipase $A_2$activity whereas did not increased NO production. ATP significantly inhibited phospholipase $A_2$activation induced by 0.1 $\mu$M A23187, 1 mM glutamate and 1 mM $H_2O$$_2$, but did not inhibited 1 $\mu$M PMA-induced phospholipase $A_2$activation. From the above results, it is suggested that the action of ATP in C6 cells has dual actions, such as the inhibition of agonist-induced phospholipase $A_2$activation and the increase of NO production.

  • PDF

Immunomodulatory Effect of Silybin on T Cell- and Macrophage-mediated Functions (T 세포 및 대식세포 기능에 대한 Silybin의 조절효과)

  • Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.51 no.4
    • /
    • pp.270-276
    • /
    • 2007
  • Silybin is known to be a major active flavonoid component isolated from Silybum marianum, a hepatoprotective medicinal plant. In this study, we examined the immunomodulatory role of silybin on T cell and macrophage-mediated immune responses. To do this, the proliferation of splenic lymphocytes and CD8+ CTLL-2 cells under mitogenic stimulation with lipopolysaccharide (LPS), concanavalin (Con) A and interleukin (IL)-2 and the production of $TNF-{\alpha}$ and NO from LPS- and $IFN-{\gamma}$-activated macrophages was evaluated under silybin treatment. The mitogenic proliferation of splenic lymphocytes induced by LPS and Con A was strongly diminished by silybin in a dose-dependent manner. Moreover, the proliferation of CD8+ CTLL-2 cells was also negatively modulated by the compound. In contrast, silybin did not strongly suppress the proliferation of normal splenocytes and T cell line Sup-T1 cells, indicating that the inhibitory effect of silybin may be due to blocking only mitogenic responses of splenic lymphocytes. In addition, silybin inhibited $TNF-{\alpha}$ production in LPS-stimulated RAW264.7 cells. Effect of silybin however was distinct, according to NO-inducing stimuli. Thus, silybin only blocked NO production induced by $IFN-{\gamma}$ but not LPS and the inhibition was increased when PMA was co-treated with $IFN-{\gamma}$. Unlike NO inhibition, however, this compound protected the cytotoxic damage of RAW264.7 cells induced by both LPS and $IFN-{\gamma}$. Therefore, our data suggest that silybin may participate in host immune responses mediated by T cells and macrophages via regulating mitogenic proliferation, and the production of $TNF-{\alpha}$ and NO, depending on cellular stimuli.

In vitro Evaluation of Anti-Human Immunodeficiency Virus Activity of Nucleoside Derivatives and Studies on Their Mode of Action (핵산유도체들의 항 Human Immunodeficiency Virus in vitro 약효평가와 작용기전연구)

  • Lee, Chong-Kyo;Kim, Dong-Ki;Kim, Jee-Hyun;Kim, Hae-Soo;Pi, Mi-Kyoung;Park, Jong-Beak;Kim, Baek
    • The Journal of Korean Society of Virology
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 1997
  • To evaluate in vitro anti-HIV efficacies of nucleoside derivatives, MT-4 cell line was infected with HIV-1 and HIV-2 respectively and treated with various compounds and the formerly approved drugs such as AZT, d4T, ddC and ddI. CPE method was used to evaluate their antiviral activity. Most dideoxynucleosides, AZT, d4T, ddC and ddI, showed anti-HIV activities against both viruses but no other compounds including anti-herpesvirus drugs did any. Further experiments were carried out to study their inhibitory mechanism of viral adsorption. The results showed no inhibition of syncytium formation due to an interaction between the gp120 expressed in HIV -infected cell surface and CD4 receptor on the uninfected cell surface in the presence of AZT. AZT showed no activity up to $100\;{\mu}g/ml$. Inhibition of reverse transcriptase (RT) in the presence of AZT-triphosphate was tested by using RT expressed in E. coli and purified and its $IC_{50}$ was 4.5 nM.

  • PDF