• Title/Summary/Keyword: $NO_{x}$ emission

Search Result 488, Processing Time 0.025 seconds

A Study on the Characteristics of Solid-Fuel Combustion (고형연료의 배출특성 연구)

  • Jang, Kee-Won;Heo, Sun-Hwa;Lim, Seung-Young;Kim, Dae-Gon;Jung, Yong-Won;Kang, Dae-Il
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.4
    • /
    • pp.351-360
    • /
    • 2017
  • In this study, we developed emission factors from solid-fuel fired combustors. In order to increase the reliability of emission factors, we conducted a joint research with the Institute of Health and Environment. As a result, PM average concentration was $8.19mg/m^3$. $SO_2$ and $NO_x$ were respectively 8.46 ppm, 50.64 ppm. Hazardous air pollutants such as Cr, Pb and Hg were detected in trace amounts continuously for 2 years in some solid-fuel fired combustors. The emission factors for the three kinds of PM, $SO_x$, $NO_x$ were developed based on the measurement data. For the PM emission factors, that of SRF was 15.93 g/kg and that of Bio-SRF was 14.18 g/kg. Compared with those of US. EPA, emission factors of this study showed the results of low values. $SO_x$ emission factors were 4.42 g/kg for SRF and 1.39 g/kg for Bio-SRF. $NO_x$ emission factors were 13.21 g/kg and 4.43 g/kg, respectively. Through the results of this study, we would support atmospheric administration policies such as the emission factor notification revision.

Unified Modeling and Performance Prediction of Diesel $NO_x$ and PM Reduction by DOC-DPF-SCR System (DOC-DPF-SCR 시스템에 의한 디젤 배기 내 $NO_x$, 입자상 물질 저감 과정의 일관 모델링 및 성능 예측)

  • Jung, Seung-Chai;Yoon, Woong-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.110-119
    • /
    • 2008
  • Computer methods with simplified mathematical models in conjunction with empirical model parameters can be efficiently practiced into an optimization of a diesel aftertreatment system. Components of prime interests are diesel particulate filter, diesel oxidation catalyst and de-$NO_x$ catalytic converter. de-$NO_x$, de-PM, and de-HC processes in each part are individually modeled, formulated and then combined into an integrated analysis procedure for a unified simulation of the diesel emission aftertreatment. The model is empirically tuned and validated with comprehensive engine and laboratory data. The effects of emission species and space velocity on the $NO_x$ and soot reductions are parametrically investigated. A lowered $NO_2/NO_x$ ratio due to PM oxidation in DPF contributes to promote the $NO_x$ reduction by SCR at intermediate gas temperatures. $NO_x$ reduction is inert to the PM oxidation at high temperatures. Rate of PM trapping strongly depends on temperature and $NO_x$ concentration.

Relationship of Electricity Consumption and Emission Rate of Acidic Gases (전력소비와 산성가스 배출량과의 관계)

  • 정일록;김대곤
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.3
    • /
    • pp.131-138
    • /
    • 1995
  • As the energy consumption increases continuously, the emission amount of air pollutants is growing, and after all it can influence the global environment as welt as the regional atmosphere. So, the clean energy which emits less air pollutants should be developed and widely used to reduce emission of pollutants. Electricity, known for clean energy in the side of consumption, is not actually clean in the process of generation. Electric power is generated using fossil fuels which produce acidic gases like $SO_{2}$, $NO_{x}$, etc. The emission rates of $SO_{2}$, $NO_{x}$, $CO_{2}$ are 2g,0.78g and 1 l0g per electric power generating Ikwh. If one light(60 watt bulb) be turned off at each house for a month electricity will be saved about 1.Skillion kwh a year. This is almost the same as 4,170 tons of $SO_{2}$ and $NO_{x}$. As a result the economization of electricity will be one of the effective strategy to reduce the air pollution and to keep our life clean and comfortable.

  • PDF

Characteristics of Ozone Precursor Emissions and POCP in the Biggest Port City in Korea

  • Song, Sang-Keun;Shon, Zang-Ho;Son, Hyun Keun
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.146-157
    • /
    • 2015
  • Emissions of ozone precursors ($NO_x$ and VOCs) and photochemical ozone creation potentials (POCPs) of VOC emission sources were investigated in the largest port city (i.e., Busan), Korea during the year 2011. This analysis was performed using the Clean Air Policy Support System (CAPSS) national emission inventory provided by the National Institute of Environmental Research (NIER), Korea. For $NO_x$, the emissions from off-road mobile sources in Busan were the most dominant (e.g., $31,202ton\;yr^{-1}$), accounting for about 60% of the total $NO_x$ emissions. The emission from shipping of off-road mobile sources (e.g., $24,922ton\;yr^{-1}$) was a major contributor to their total emissions, amounting to 47% of the total $NO_x$ emissions due to the port-related activities in Busan. For VOCs, the emission source category of solvent usage was predominant (e.g., $36,062ton\;yr^{-1}$), accounting for approximately 82% of the total VOC emissions. Out of solvent usages, the emission from painting was the most dominant ($22,733ton\;yr^{-1}$), comprising 52% of the total emissions from solvent usages. The most dominant VOC species emitted from their sources in Busan was toluene, followed by xylene, butane, ethylbenzene, n-butanol, isopropyl alcohol, and propane. The major emission sources of toluene and xylene were found to be painting of coil coating and ship building, respectively. The value of POCP for the off-road mobile source (61) was the highest in ten major activity sectors of VOC emissions. Since the POCP value of ship transport of off-road mobile source (72) was also high enough to affect ozone concentration, the ship emission can play a significant role in ozone production of the port city like Busan.

Development of Predictive Model for Pollutants Emission from Power Plants (발전소의 대기오염물질 배출 예측 모델 개발)

  • 김민석;김경희;이인범
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.543-550
    • /
    • 1998
  • From the power plant in a steel plant, environment pollutants such as $SO_x$, $NO_x$, CO and $CO_2$ are emitted by combustion reactions of the fuels which are by-product gases, oil and liquefied natural gas(LNG). To reduce the amounts of the pollutants, it is important to build a predictive model for the emission of the pollutants. In this paper, model that predict the amounts of generated pollutants for the used fuel is developed by using Gibbs free energy minimization method[1] with the temperature correction technique. For some data set, the calculation results from this model are compared with the real emission amounts of $SO_x$, $NO_x$, and the result of the calculation by both ASPEN PLUS which is a commercial simulation software. This model shows good results and can be applied to other power plants.

  • PDF

Seasonal Nitrogen Oxides Improvement due to On-road Mobile Air Pollution Source Emission Control Plan in Seoul Metropolitan Area (도로이동오염원 대기오염 저감대책에 의한 수도권 지역 계절별 질소산화물 개선효과)

  • Kim, Yoo Jung;Jeong, Hye-Seon;Kim, Suhyang;Ma, Young-Il;Lee, Woo-Keun;Kim, Jeongsoo;Sunwoo, Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.269-278
    • /
    • 2016
  • In order to improve air quality in the Seoul Metropolitan Area (SMA), the "Special Act on Seoul Metropolitan Air Quality Improvement" has been enforced since 2005. The strategy has resulted in some reduction of air pollution, but there has not been much research into the quantitative impact analysis of each separate preventive countermeasure. Therefore, we analyzed nitrogen oxide reduction resulting from implementation of the emission control plan for on-road mobile sources. The MM5-SMOKE-CMAQ model system was employed for air quality prediction. Reduced $NO_x$ emissions for SMA was 16,561 ton, 4.7% of reduction rate, in 2007. One countermeasure, tighter acceptable standards for manufacturing vehicles, dominated other countermeasures for effective $NO_x$ emission control. Large spatial differences in reduced emissions, those for Seoul being twice that of Incheon and Gyeonggi, showed greater $NO_x$ emission reduction impact in the heart of the metropolitan complex. The $NO_2$ concentration decreased by 0.60 ppb (2.0%), 0.18 ppb (1.5%), and 0.22 ppb (1.7%) in Seoul, Incheon, and Gyeonggi, respectively. Concentration decreases in spring and winter were larger, 1.5~2.0 times, than summer and fall. However, the $NO_2$ reduction impact did not correspond directly to local $NO_x$ emission controls in the city area because of the natural flow and dispersion, both urban and downwind.

A Study on the Ozone Control Strategy using the OZIPR in the Seoul Metropolitan Area

  • Jin, Lan;Lee, Sun-Hwa;Shin, Hye-Jung;Kim, Yong-Pyo
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.111-117
    • /
    • 2012
  • To establish area specific control strategy for ambient ozone in the Seoul Metropolitan Area (SMA), the maximum ozone concentration in each local government district in the SMA were estimated by using the OZone Isopleth Plotting Package for Research (OZIPR) model. The modeling period was June 2000 and the emission inventory data used were from National Institute of Environmental Research (NIER). Except the islands of Incheon, whole Seoul and Incheon areas were volatile organic compounds (VOCs) limited, i.e., decreasing the oxides of nitrogen ($NO_X$) emission alone may increase the maximum ozone concentration upto certain point. In Gyeonggi, 12 areas were VOCs limited while 12 areas were in between VOCs limited and $NO_X$ limited, i.e., decreasing both $NO_X$ and VOCs emission may decrease the maximum ozone concentration. Majority of the estimated ozone values were lower than the measured values. The reason could be inaccuracy in emission inventories and/or transport from other areas. The same calculation was carried out for June 2004 and it was found that Seoul was still in the VOCs limited condition.

Numerical Analysis of the Extinction and $NO_x$ Emission in Methane/Air Premixed Flame by Hydrogen Addition (메탄/공기 예혼합화염에서의 수소첨가에 의한 소염 및 $NO_x$ 발생특성에 관한 수치해석)

  • Cho, Eun-Seong;Chung, Suk-Ho;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.75-81
    • /
    • 2006
  • Lean premixed combustion is a well known method for low $NO_x$ gas turbine combustor. But lean combustion is usually accompanied by flame instability. To overcome this problem, the hydrogen ($H_2$) was added to main fuel methane to increase flammable limit. In this paper, the effects of hydrogen addition on lean premixed combustion of methane ($CH_4$) were investigated numerically. Results showed that the extinction stretch rate increases and the extinction temperature constant with relatively small amount of $H_2$ addition. The flame temperature and NO emission increase with $H_2$ addition at the same stretch rate and equivalence ratio but it could increase the range of lean extinction and extinction equivalence ratio limit. Eventually, the $H_2$ addition case showed almost same or lower NO emission than no addictive $CH_4$ case in the extinction condition.

Evaluations for Representativeness of Light-Duty Diesel Vehicles' Fuel-based Emission Factors on Vehicle Operating Conditions (연료 소비량에 기반한 소형 경유차 대기오염물질 배출계수의 운전조건별 대표성 평가)

  • Lee, Taewoo;Kwon, Sangil;Son, Jihwan;Kim, Jiyoung;Jeon, Sangzin;Kim, Jeongsoo;Choi, Kwangho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.745-756
    • /
    • 2013
  • The purpose of this study is to evaluate representativeness of fuel-based emission factors. Twelve light-duty diesel vehicles which meet Euro-3 to 5 legislative emission limits were selected for emission tests. Second-by-second modal emission rates of vehicles were measured on a standard laboratory chassis dynamometer system. An off-cycle driving cycle was developed as a representative Korean real-world on-road driving cycle. Fuel-based emission factors were developed for short trip segments that involved in the selected driving cycle. Each segment was defined to have unit travel distance, which is 1 km, and characterized by its average speed and Relative Positive Acceleration (RPA). Fuel-based $NO_x$ emission factors demonstrate relatively good representativeness in terms of vehicle operation conditions. $NO_x$ emission factors are estimated to be within ${\pm}20%$ of area-wide emission factor under more than 40% of total driving situations. This result implies that the fuel-based $NO_x$ emission factor could be practically implemented into the on-road emission management strategies, such as a remote sensing device (RSD). High emitting vehicles as well as high emitting operating conditions heavily affect on the mean values and distributions of CO and THC emission factors. Few high emitting conditions are pulling up the mean value and biasing the distributions, which weaken representativeness of fuel-based CO and THC emission factors.

Combustion and Exhaust Emission Characteristics of DME in a Common-rail Diesel Engine (커먼레일 디젤엔진에서 DME의 연소 및 배기 특성)

  • An, Sang-Gyu;Kim, Myung-Yoon;Yoon, Seung-Hyun;Lee, Je-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.74-80
    • /
    • 2007
  • An experiment was conducted with a common-rail direct injection diesel engine operated with neat dimethyl ether (DME). In order to investigate the effect of combustion characteristics and emission reduction of DME fuel, the experiment was performed at various injection pressure from 35 MPa to 50MPa. Also, the exhaust emissions from the engine were compared with that of diesel fuel. In this work, Cooled EGR was implemented to reduce $NO_x$ exhaust emissions. The results showed that DME has shorter ignition delay than that of diesel fuel. Despite of the increased $NO_x$ emissions with DME at an equal engine power compared to the case of fueling diesel, the engine emitted zero soot emissions all over the operating conditions in this work. $NO_x$ emission can be decreased greatly by adopting 45% of EGR while maintaining zero soot emission. Judging from the result of engine test, DME is a suitable fuel for common-rail diesel engine due to it's clean emission characteristics.