• Title/Summary/Keyword: $NH_4HSO_4$

Search Result 15, Processing Time 0.019 seconds

Size Distribution Characteristics of Water-soluble Ionic Components in Airborne Particulate Matter in Busan (부산 도심지역 대기중 입자상물질의 크기분포에 따른 수용성 이온성분의 특성)

  • Park, Gee-hyeong;Lee, Byeong-kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.3
    • /
    • pp.287-301
    • /
    • 2015
  • This study was conducted to investigate size distribution characteristics of water-soluble ionic components in the airborne particulate matter (PM) collected from an urban area in Busan using a MOUDI cascade impactor from March to October 2010. The inorganic constituents in the fine particles (${\leq}1.8{\mu}m$) predominantly consisted of sulfate, nitrate, ammonium, and potassium. Sulfate and ammonium concentrations showed a high correlation and similar equivalent concentrations in the fine modes including $0.18{\sim}0.32{\mu}m$, $0.32{\sim}0.56{\mu}m$, and $0.56{\sim}1.0{\mu}m$. This indicates that the main chemical component in the fine particles would be forms of ammonium sulfate such as $(NH_4)_3H(SO_4)_2$, $(NH_4)_2SO_4$, and $(NH_4)HSO_4$. Back trajectory analysis showed that relatively higher concentrations of ammonium, nitrate, and sulfate in the fine mode, compared to the coarse mode, are caused both by domestic sources and long-range transports originated from China continent. High concentration episodes of PM both in the fine mode and the coarse mode were attributed both by anthropogenic sources, such as ship emissions and traffic emissions, and by natural sources such as seawater (sea salt), respectively.

Development of Semicontinuous Measurement System of Ionic Species in PM2.5

  • Hong, Sang-Bum;Chang, Won-il;Kang, Chang-Hee;Lee, Jai H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1505-1515
    • /
    • 2009
  • A new method to semicontinuously determine $PM_{2.5}$ ionic species with a short time resolution is described in detail. In this system, a particle collection section (mixing part, particle collection chamber, and air/liquid separator) was developed. A Y-type connector was used to mix steam and an air sample. The particle collection chamber was constructed in the form of a helix coil and was cooled by a water circulation system. Particle size growth occurred due to the high relative humidity and water absorbed particles were efficiently collected in it. Liquid samples were drained out with a short residence time (0.08-0.1 s). The air/liquid separator was also newly designed to operate efficiently when the flow rate of the air sample was 16.7 L $min^{-1}$. For better performance, the system was optimized for particle collection efficiency with various types of test aerosols such as ($NH_4)_2SO_4,\;NaCl,\;NH_4HSO_4,\;and\;NH_4NO_3$. The particle collection efficiencies were almost 100% at different concentration levels in the range over 500 nm in diameter but 50-90% in the range of 50-500 nm under the following experimental conditions: 15 coil turns, a water flow rate for steam generation of 0.65 mL $min^{-1}$, and an air sample flow rate of 16.7 L $min^{-1}$. Finally, for atmospheric applications, chemical compositions of $PM_{2.5}$ were determined with a time resolution of 20 min on January 11-24, 2006 in Seoul, Korea, and the chemical characteristics of $PM_{2.5}$ ions were investigated.

An Experimental Study of Nano PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System to Meet EURO-IV (상용디젤엔진의 EURO-IV 배기규제 대응을 위한 Urea-SCR 시스템의 나노입자 배출특성에 관한 실험적 연구)

  • Lee, Chun-Hwan;Cho, Taik-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.128-136
    • /
    • 2007
  • It is well known that two representative methods satisfy EURO-IV regulation from EURO-III. The first method is to achieve the regulation through the reduction of NOx in an engine by utilizing relatively high EGR rate and the elimination of subsequently increased PM by DPF. However, it results in the deterioration of fuel economy due to relatively high EGR rate. The second is to use the high combustion strategy to reduce PM emission by high oxidation rate and trap the high NOx emissions with DeNOx catalysts such as Urea-SCR. While it has good fuel economy relative to the first method mentioned above, its infrastructure is demanded. In this paper, the number distribution of nano PM has been evaluated by Electrical Low Pressure Impactor(ELPI) and CPC in case of Urea-SCR system in second method. From the results, the particle number was increased slightly in proportion to the amount of urea injection on Fine Particle Region, whether AOC is used or not. Especially, in case of different urea injection pressure, the trends of increasing was distinguished from low and high injection pressure. As low injection pressure, the particle number was increased largely in accordance with the amount of injected urea solution on Fine Particle Region. But Nano Particle Region was not. The other side, in case of high pressure, increasing rate of particle number was larger than low pressure injection on Nano Particle Region. From the results, the reason of particle number increase due to urea injection is supposed that new products are composited from HCNO, sulfate, NH3 on urea decomposition process.

Synthesis and Solution Properties of Zwitterionic Copolymer of Acrylamide with 3-[(2-Acrylamido)dimethylammonio]propanesulfonate

  • Xiao, Hui;Hu, Jing;Jin, Shuailin;Li, Rui Hai
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2616-2622
    • /
    • 2013
  • A novel zwitterionic monomer 3-[(2-acrylamido)dimethylammonio]propanesulfonate (DMADAS) was designed and synthesized in this study. Then it was polymerized with acrylamide (AM) by free radical polymerization in 0.5 mol/L NaCl solution with ammonium persulfate ($(NH_4)_2S_2O_8$) and sodium sulfate ($NaHSO_3$) as initiator. The structure and composition of DMADAS and acrylamide-3-[(2-acrylamido)-dimethylammonio]propanesulfonate copolymer (P-AM-DMADAS) were characterized by FT-IR spectroscopy, $^1H$ NMR and elemental analyses. Isoelectric point (IEP) of P-AM-DMADAS was tested by nanoparticle size and potential analyzer. Solution properties of copolymer were studied by reduced viscosity. Antipolyelectrolyte behavior was observed and was found to be enhanced with increasing DMADAS content in copolymer. The results showed that the viscosity of P-AM-DMADAS is 5.472 dl/g in pure water. Electrolyte was added, which weakened the mutual attraction between sulfonic acid group and quaternary ammonium group. The conformation became loose, which led to the increase of reduced viscosity. The ability of monovalent and divalent cation influencing the viscosity of zwitterionic copolymer obeyed the following sequence: $Li^+$ < $Na^+$ < $K^+$, $Mg^{2+}$ < $Ca^{2+}$ < $Ba^{2+}$, and that of anion is in the order: $Cl^-$ < $Br^-$ < $I^-$, $CO{_3}^{2-}$ > $SO{_3}^{2-}{\approx}SO{_4}^{2-}$.

Optimization of Production Medium by Response Surface Method and Development of Fermentation Condition for Monascus pilosus Culture (Monascus pilosus 배양을 위한 반응표면분석법에 의한 생산배지 최적화 및 발효조건 확립)

  • Yoon, Sang-Jin;Shin, Woo-Shik;Chun, Gie-Taek;Jeong, Yong-Seob
    • KSBB Journal
    • /
    • v.22 no.5
    • /
    • pp.288-296
    • /
    • 2007
  • Monascus pilosus (KCCM 60160) in submerged culture was optimized based on culture medium and fermentation conditions. Monacolin-K (Iovastatin), one of the cholesterol lowing-agent which was produced by Monascus pilosus may maintain a healthy lipid level by inhibiting the biosynthesis of cholesterol. Plackett-Burman design and response surface method were employed to study the culture medium for the desirable monacolin-K production. As a result of experimental designs, optimized production medium components and concentrations (g/L) were determined on soluble starch 96, malt extract 44.5, beef extract 30.23, yeast extract 15, $(NH_4)_2SO_4$ 4.03, $Na_2HPO_4{\cdot}12H_2O$ 0.5, L-Histidine 3.0, $KHSO_4$ 1.0, respectively. Monacolin-K production was improved about 3 times in comparison with shake flask fermentation of the basic production medium. The effect of agitation speed (300, 350, 400 and 450 rpm) on the monacolin-K production were also observed in a batch fermenter. Maximum monacolin-K production with the basic production medium was 68 mg/L when agitation speed was 500 rpm. And it was found that all spherical pellets (average diameter of $1.0{\sim}1.5mm$) were dominant during fermentation. Based on the results, the maximum production of 185 mg/L of monacolin-K with the optimized production medium was obtained at pH (controlled) 6.5, agitation rate 400 rpm, aeration rate 1 vvm, and inoculum size 3%.