• Title/Summary/Keyword: $NH_{4^-}N$

Search Result 2,108, Processing Time 0.026 seconds

Effects of various Nitrite and Ammonium Nitrogen Concentrationes in the Application of ANAMMOX of Piggery Waste (돈사폐수의 ANAMMOX 적용에 있어서 아질산성 질소 및 암모니아성 질소의 농도에 따른 영향)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.482-491
    • /
    • 2006
  • The anaerobic ammonium oxidation (ANAMMOX) from substrates with various $NO_2-N$ and $NH_4-N$ concentationes, which were generated from piggery waste was accomplished by using anaerobic granular sludge as seeding sludge. As the result of operation, when $NO_2-N/NH_4-N$ ratios of ANAMMOX influent were 0.6~1.5, $NO_2-N/NH_4-N$ removal ratios were exhibited 1.19~2.07 (average 1.63). The higher influent $NO_2-N/NH_4-N$ ratios resulted in higher $NO_2-N/NH_4-N$ removal ratios by ANAMMOX. It means that $NO_2-N$ concentration is very important factor in ANAMMOX. Specific ammonium removal rate was constantly as $0.03{\sim}0.04gNH_4-N/g$ VSS-day at $35^{\circ}C$ while it was $0.01gNH_4-N/g$ VSS-day at $20{\sim}30^{\circ}C$. Thus, in order to reduce the effluent N concentration, either an increase of ANAMMOX reactor HRT or more biomass accumulation at the optimal temperature can be considered.

Ammonia Volatilization from Coated Urea in Paddy Soil of Transplanting Rice Culture (벼 이앙재배에서 피복요소 시용에 따른 암모니아 휘산)

  • Lee, Dong-Wook;Park, Ki-Do;Park, Chang-Young;Kang, Ui-Gum;Son, Il-Soo;Yun, Eul-Soo;Park, Sung-Tae;Lee, Suk-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.6
    • /
    • pp.321-327
    • /
    • 2005
  • Ammonia ($NH_3$) volatilization was measured from latex coated urea (LCU) and normal urea treated rice paddy under transplanting rice culture in Milyang in 2002 and 2003. The $NH_3$ volatilization from incubation experiment was significantly related with ammonium-N ($NH_4-N$) concentration and pH in the surface water. The correlation coefficients of $NH_3$ volatilization compared to the $NH_4-N$ and pH in surface water were significantly higher in urea than LCU. The $NH_3$ volatilization from both urea and LCU treatments was not increased in surface water of pH less than 8.0, while $NH_3$ volatilization increased significantly in the surface water of pH over 8.0. The results in the field experiment indicated that $NH_3$ volatilization after top-dressing of urea increased rapidly with increasing $NH_4-N$ concentration in soil and floodwater, and highest from 7 to 10 days after top-dressing. The amount of $NH_3$ volatilized from urea treatment was in the range of $4.9-8.4kg\;N\;ha^{-1}$. The variations of $NH_3$ volatilization in 2002 and 2003 were caused by changed N dynamics due to the different weather conditions such as rainfall and temperature. The amount of $NH_3$ volatilized from LCU treatment was significantly reduced compared to that of urea. The reason for the reduced $NH_3$ volatilization in LCU treatment would be due to the lower concentration of $NH_4-N$ in floodwater. The amount of $NH_3$ volatilized from LCU treated rice paddy was in the range of $1.2-1.8kg\;N\;ha^{-1}$, and the loss of N by ammonia volatilization was 2.0-2.3%. Loss of N by $NH_3$ volatilization with LCU treatment was reduced by 75-79% comparing to urea treatment.

PEG에 고정화된 Pseudomonas aeruginosa를 이용한 NH$_4$-N, NO$_3$-N 동시제거에 관한 연구

  • Park, Gyeong-Hun;Jeong, Gyeong-Hun;Choe, Hyeong-Il;Song, Won-Jong;Gang, Yeong-Ju
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.503-506
    • /
    • 2008
  • 질소제거 능력이 있는 Pseudomonas aeruginosa을 고분자물질인 PEG 에 포괄고정화하였으며 제조된 고정화 미생물을 이용하여 질소제거에 미치는 C/N비, 농도, 충진율, 탄소별 제거율을 검토한 결과 다음과 같은 결론을 얻었다. 1) C/N비 10이상이면 NH$_4$-N 와 NO$_3$-N의 동시 제거가 가능하였으며 2) 탄소 원으로는 glucose를 사용하였을 때 NH$_4$-N 와 NO$_3$-N의 동시 제거가 가능하였으나 methanol은 탄소원으로 사용할 수 없었다. 3) 저농도의 NO$_3$-N(50 mg/L)는 완전히 제거 가능하였으나 NH$_5$-N인 경우에는 초기 NH$_4$-N 100 mg/L에서 60%정도만 제거되었다. 4) 연속처리 결과 NH$_4$-N는 HRT 변동에도 불구하고 유출수 농도 변화가 거의 없었으나, 오히려 C/N비를 증가시키면 NH$_4$-N 제거 효율이 높았고, NO$_3$-N인 경우도 마찬가지로 C/N비를 증가시키면 NO$_3$-N 제거 효율이 높았다.

  • PDF

The Effects of Nitrogen Fertilization Levels on the Content of ${NH_4}^+$-N and ${NO_3}^-$-N in Soil of Zoysiagrass(Zoysia japonica ) and 'Suffolk' Kentucky Bluegrass(Poa pratensis) (한국잔디(Zoysia japonica)와 'Suffolk' Kentucky bluegrass(poa pratensis)에서 지소지용 수준이 토양중 ${NH_4}^+$-N와 ${NO_3}^-$-N 함량에 미치는 영향)

  • 김성태;육완방;이정재;김인섭;함성규
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.3
    • /
    • pp.207-212
    • /
    • 1995
  • This experiment was conducted to investigate the effect of the nitrogen fertilization levels on the content of $NH_4^+$-N in soil of 'Suffolk' Kentucky bluegrass and zoysiagrass. The results obtained are summarized as follows : 1.According to the nitrogen fertilization levels, the content of $NH_4^+$-N in soil of Kentucky blue-grass and zoysiagrass was not significantly different. The content of $NH_4^+$-N in soil of Kentucky bluegrass and zoysiagrass was highest in June and December and lowest in March and September. 2.The content of $NH_3^-$-N in soil was increased by increasing the nitrogen fertilization levels in both Kentucky bluegrass and zoysiagrass. However, the deeper the depth of soil the less the content of $NO_3^-$-N in soil. In 40~60cm soil depth, the content of $NO_3^-$-N in soil was lower than 10ppm in average. Even in June, which was the highest month of the content of $NO_3^-$-N in soil, the content of $NO_3^-$-N in soil was not overpassed the degree of 20ppm.

  • PDF

Management of Nutrient Solution Based on $\textrm{NH}_4\textrm{H}_2\textrm{PO}_4$Concentration in Deep Flow Culture of Cherry Tomato (방울토마토 담액재배시 $\textrm{NH}_4\textrm{H}_2\textrm{PO}_4$ 농도에 기초한 배양액 조절)

  • 이문정;김성은;김영식
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.188-194
    • /
    • 1995
  • This study was carried out to investigate the effect of NH$_4$H$_2$PO$_4$ on pH stabilization in deep flow culture system using tap water, and to determine the optimum range of NH$_4$H$_2$PO$_4$ in culture solution. The pH of tap water is 7.5. The higher the concentration of NH$_4$H$_2$PO$_4$ was, the more the pH of nutrient solution was decreased. In NH$_4$H$_2$PO$_4$ 4/3-5/3 me/$\ell$, the pH of nutrient solution was 6-7.5 during the experiment. The highest brix(%) was obtained in NH$_4$H$_2$PO$_4$ 5/3-6/3 me/$\ell$. Leaf length, leaf width and stem-base diameter were highest in NH$_4$H$_2$PO$_4$ 2/3 me/$\ell$. The L and b* values were highest and the a* value was lowest in NH$_4$H$_2$PO$_4$ 8/3 me/$\ell$. Toxicity symptom of ammonium appeared in NH$_4$H$_2$PO$_4$ 8/3 me/$\ell$. It suggests that there was the relationship between leaf color and growth condition. It was concluded that NH$_4$H$_2$PO$_4$ 2/3 me/$\ell$ was good before harvest stage and NH$_4$H$_2$PO$_4$ 5/3-6/3 me/$\ell$ at harvest stage.

  • PDF

Performance of Chlorella vulgaris for the Removal of Ammonia-Nitrogen from Wastewater

  • Choi, Hee-Jeong;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.235-239
    • /
    • 2013
  • In the present investigation, the efficiency of Chlorella vulgaris (C. vulgaris) was evaluated for the removal of ammonia-nitrogen from wastewater. Eight different wastewater samples were prepared with varied amounts of $NH_4-N$ concentrations from 15.22 to 205.29 mg/L. Experiments were conducted at pH $7.5{\pm}0.3$, temperature $25^{\circ}C{\pm}1^{\circ}C$, light intensity $100{\mu}E/m^2/s$, and dark-light cycles of 8-16 hr continuously for 8 days. From the results, it was found that $NH_4-N$ was completely removed by C. vulgaris, when the initial concentration was between 5.22-25.24 mg/L. However, only 50% removal was obtained when the $NH_4-N$ concentration was 85.52 mg/L, which further decreased to less than 32% when the $NH_4-N$ concentration exceeded 105.43 mg/L. The further influence of nitrogen on chlorophyll was studied by various $NH_4-N$ concentrations. The maximal value of chlorophyll a (Chl a) content was found to be 19.21 mg/L for 65.79 mg/L $NH_4-N$ concentration, and the maximum specific $NH_4-N$ removal rate of 1.79 mg/mg Chl a/day was recorded at an $NH_4-N$ concentration of 85.52 mg/L. These findings demonstrate that C. vulgaris could potentially be employed for the removal of $NH_4-N$ from wastewater.

Alleviating Effect of the Application of the Easily Decomposable Carbohydrate on Ammonium Toxicity in Chinese Cabbage (Brassica rapa var. chinensis)

  • Ku, Hyun-Hwoi;Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.451-455
    • /
    • 2015
  • An excess application of N fertilizer causes physiological and morphological disorder known as ammonium ($NH_4{^+}$) toxicity in Chinese cabbage and it has been to be an issue for appropriate N fertilizer management. Hence, the pot experiment was conducted in order to evaluate the alleviating effect of the application of the easily decomposable carbohydrate on $NH_4{^+}$ toxicity in Chinese cabbage. Four levels of urea at 0, 160, 320, and $640kg\;N\;ha^{-1}$, represented as T1, T2, T3, and T4, respectively, were applied. In order to evaluate the alleviating effect of the application of the easily decomposable carbohydrate (sucrose) at T3 and T4 where $NH_4{^+}$ toxicity had occurred, five levels of sucrose were applied to meet C/N ratios of 0, 2, 4, 6, and 10, respectively. Our results showed that the $NH_4{^+}$ toxicity was observed at T3 and T4 at 5 days after treatment (DAT). $NH_4{^+}$ toxicity contributed to decrease fresh weight, length of leaves, length of root, and number of leaves significantly (p<0.05). The application of sucrose as a source of mitigating $NH_4{^+}$ toxicity had a good performance at T3 with the alleviating effect as 73 % and reduced in $NH_4{^+}-N$ content in soil at 29 DAT. In the maximum N rate of T4, however, sucrose application recovered it as 32 % only compared to T2 even though the same C/N ratio was treated. Consequently, sucrose as the easily decomposable carbohydrate played crucial role to reduce $NH_4{^+}$ concentration in soil and finally alleviated $NH_4{^+}$ toxicity in plant.

Effect of Ruminal NH3-N Levels on Ruminal Fermentation, Purine Derivatives, Digestibility and Rice Straw Intake in Swamp Buffaloes

  • Wanapat, M.;Pimpa, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.904-907
    • /
    • 1999
  • The experiment was aimed at studying the effect of ruminal $NH_3-N$ levels on ruminal fermentation, microbial population, urinary purine derivative excretion, digestibility and rice straw intake in swamp buffaloes. Five, 3 to 4 years old, rumen fistulated swamp buffaloes were randomly assigned according to a $5{\times}5$ Latin square design to rceive five different intraruminal infusions of $NH_4HCO_3$ (0, 150, 300, 450 and 600 g/d) on a continuous daily basis. Rice straw as a roughage was offered ad libitum while concentrate was given at 0.8% BW daily. The results were that as levels of $NH_4HCO_3$ increased, ruminal $NH_3-N$ concentrations increased from 7.1 to 34.4 mg%. The highest digestibility and voluntary straw intakes were found at 13.6 to 17.6 mg% ruminal $NH_3-N$ levels; straw intake was highest at 13.6 mg%. Total bacterial and protozoal counts linearly increased as the ruminal $NH_3-N$ increased and were highest at 17.6 mg%. Total urinary purine derivatives and allantoin excretion were highest (44.0, 37.4 mM/d) at 17.6 mg% ruminal $NH_3-N$. Highest total VFAs (115 mM) were obtained a 13.6 mg% ruminal $NH_3-N$ while blood urea nitrogen significantly increased as ruminal $NH_3-N$ increased. The results from this experiment suggest that optimum ruminal $NH_3-N$ in swamp buffaloes is higher than 13.6 mg%, for improving rumen ecology, microbial protein synthesis, digestibility and straw intake.

Changes of Nitrogen Uptake, Growth and Activities of Nitrogen Metabolizing Enzymes by Different Source of Nitrogen in Tobacco (담배에서 질소 형태에 따른 흡수 양상 및 생육과 질소대사 효소의 활성 변화)

  • 이상각;심상인;강병화;배길관
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.5
    • /
    • pp.515-521
    • /
    • 1997
  • Tobacco plant was grown for 40 days hydroponically in nutrient solutions composed of different forms of nitrogen, like NO$_3$$^{[-10]}$ -N, NH$_4$$^{+}$-N, and a mixed formulation of NO$_3$$^{[-10]}$ -N and NH$_4$$^{+}$-N. Uptake response, nitrate reductase, and glutamine synthetase activity at growth stage were investigated to understand the basic knowledge of nitrogen metabolism. The better growth of shoot and root was observed in the mixed nutrient solution than NO$_3$$^{[-10]}$ -N or NH$_4$$^{+}$-N, alone. The plant growth in NH$_4$$^{+}$-N nutrient solution was poor due to ammonium toxicity. The pH of nutrient solution containing NO$_3$$^{[-10]}$ -N increased up to 40 days after transplanting. But the pH of solution containing NO$_3$$^{[-10]}$ -N decreased drastically to 3.42 at 20 days after transplant. The pH in the mixed formulation dropped to pH 3.64 at 30 days after transplant and showed re-increase. It is assumed that nitrogen of NH$_4$$^{+}$-N form was taken up preferentially at early stage and NO$_3$$^{[-10]}$ -N form was taken up preferentially at middle stage in the treatment with the mixed solution. The result indicates that the relative proportion of nitrogen forms affected the uptake patterns at each growth stages. The contents of chlorophyll and soluble protein were high with the mixed solution. Total nitrogen content was the highest in NH$_4$$^{+}$-N solution and the content also increased by the application of the mixed type of nitrogen. The amount of nitrate in leaves was high in NO$_3$$^{[-10]}$ -N treatment and the amount of ammonium was high in NH$_4$$^{+}$-N treatment. The activity of nitrate reductase or glutamine synthetase was highest in the leaves grown in mixed nutrient solution than in those with any other single of nitrogen form.

  • PDF

Preparation of AlN Powder by Combustion Reaction in the System of Al-AlN-NH4Cl (Al-AlN-NH4Cl 계에서 연소반응에 의한 AlN 분말의 제조)

  • Min, Hyun-Hong;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.7 s.290
    • /
    • pp.445-450
    • /
    • 2006
  • The preparation of AlN powder by SHS in the system of $Al-AlN-NH_4Cl$ was investigated in this study. In the preparation of AlN powder, the effect of gas pressure and the composition such as Al, AlF, and additive in mixture on the reactivity were investigated. At 60 atm of the initial inert gas pressure in reactor, the optimum composition for the preparation of pure AlN was 35 wt%Al+5 wt% $NH_4Cl+60wt%$AlN. The AlN powder synthesized in this condition was a single phase AlN with a whisker morphology.