• Title/Summary/Keyword: $N^G$-nitro-l-arginine

Search Result 92, Processing Time 0.026 seconds

Studies on Mechanism of Antidiuretic Action of N$_G$ Nitro-L-Arginine, Nitric Oxide Synthase Inhibitor, in Dog (Nitric Oxide의 합성 억제제인 N$_G$-Nitro-L-Arginine의 항이뇨작용 기전에 관한 연구)

  • 고석태;유강준
    • Biomolecules & Therapeutics
    • /
    • v.6 no.3
    • /
    • pp.225-231
    • /
    • 1998
  • This studies were performed for investigation of mechanism on central antidiuretic action of L$_{G}$-Nitro-L-arginine (L-NOARG), nitic oxide systhase inhibitor, in dog. Antidiuretic action of L-NOARG infused into the carotid artery was not affected by renal denervation but inhibited by pretreatment with arginine, NO Precusor. Furthermore, L-NOARG inhibited the diuretic action of dopamine induced by hemodynamic development. Above results suggest that antidiuretic actions of L-NOARG mediated by endogenous substances not associated with renal nerve. Therefore, it is demonstrated that those endogenous substances might be associated with NO which mediate the diuretic action of dopamine.e.

  • PDF

Role of Nitric Oxide as an Antioxidant in the Defense of Gastric Cells (위선세포의 항산화 방어기전으로의 Nitric Oxide의 역할)

  • Kim, Hye-Young;Lee, Eun-Joo;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.389-397
    • /
    • 1996
  • Gatric mucosa is exposed to toxic, reactive oxygen species generated within the lumen. Nitric oxide protected acetaminophen-induced hepatotoxicity by maintaining glutathione homeostasis. The present study examined the role of nitric oxide in mediating hydrogen peroxide - induced damage to gastric cells. Hydrogen peroxide was generated by glucose oxidase acting on ${\beta}-D-glucose$. L-arginine, $N^G-nitro-L-arginine$ methyl ester, or $N^G-nitro-L-arginine$ were treated to the cells with glucose/glucose oxidase. Lipid peroxidation and nitrite release and cellular content of glutathione were determined. As a result, dose - dependent increase in lipid peroxide production as well as dose - dependent decrease in nitrite release and cellular glutathione content were observed in glucose/glucose oxidase - treated cells. Pretreatment of L-arginine, a substrate for nitric oxide synthase, prevented the increase of lipid peroxide production and the reduction of nitrite release as well as glutathione content. Inhibitors of nitric oxide synthase such as $N^G-nitro-L-arginine$ methyl ester and $N^G-nitro-L-arginine$ did not protect hydrogen peroxide - induced cell damage. In conclusion, nitric oxide protects gestric cells from hydrogen peroxide possibly by inhibiting lipid peroxidation and by preserving cellular glutathione stores.

  • PDF

Stimulatory Effect of Ginseng Saponin on Endogenous Production of Nitic Oxide

  • Kim, Hye-Young
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.199-207
    • /
    • 1998
  • Ginseng saponin (G5) purified from Panax ginseng, increase renal blood flow in rats. Nitric oxide (NO) is thought to be a substance endogenously released by G5 in preconstricted lungs and cultured endothelial cells. The present study aims to determine whether G5 could stimulate endogenous 1'elease of NO in rat kidney and urine levels of the stable NO metabolites, nitrite (NO,) and nitrate (NO,) and urinary COMP levels were measured 8 hr after a single intraperitoneal injection of GS (200 mg/kg) Into rats. The effects of the WO synthesis inhibitor, Nu-nitro-L-arginine methyl ester, .1nd the NO precursor, L-arginine, on the G5-induced changes were also determined. The activity of NO synthase, as determined by conversion of ('"C)-L-arginine to ('"C)-L-citrulline, in whole kidney, glomeruli and cortical tubules were also investigated. A single injection of GS resulted in endogenous production of NO as reflected by increase in serum and urine levels of N021N03 and urinary cGMP levels, which were inhibited by the addition o ( N-nitro-L-arginine methyl ester and restored fly L-arginine. GS also stimulated the activity of NO synthase in whole kidney as well as glomeruli and cortical tubules, and Nu-nitro-L-arginine methyl tilter significantly prevented this increase. In conclusion, GS stimulates endogenous NO production and thus, may play a protective role 1 11 the kidney by modulating renal blood flow.

  • PDF

Another Evidence for Nitric Oxide as Mediator of Relaxation of Isolated Rabbit and Human Corpus Cavernosum

  • Chang, Ki-Churl
    • Biomolecules & Therapeutics
    • /
    • v.2 no.2
    • /
    • pp.136-140
    • /
    • 1994
  • To prove the hypothesis that NO- and N $O_2$-carrying molecules potentiate photorelaxation by generating NO, investigation was carried out using isolated rabbit and human corpus cavernosum. Corporal smooth muscle, in the presence or absence of endothelium, relaxed only slightly upon ultraviolet light (366 nm) irradiation. But, NO-and/or N $O_2$-containing compounds such as streptozotocin and $N^{G}$-nitro-L-arginine methyl ester significantly (p<0.01) enhanced photorelaxation in this tissue. In addition, $N^{G}$-nitro-D-arginine methyl ester, known to lack inhibitory action on NO synthase, showed concentration-dependent potentiation of the photorelaxation. Oxygen radical generating system via copper+ascorbic acid and guanylate cyclase inhibitor, methylene blue, significantly (p<0.05) inhibited the streptozotocin-potentiated photorelaxation. Nitrite was accumulated by photolysis of streptozotocin, $N^{G}$-nitro-L-arginine methyl ester and $N^{G}$-nitro-D-arginine methyl ester, in a concentration and exposure time dependent manner. These observations indicate that NO is a potent relaxant of rabbit and human corpus cavernosum and further support the hypothesis that NO is released by photolysis from NO- and N $O_2$-carrying molecules.lecules.

  • PDF

Renal Action of $N^G$-Nitro-L-arginine, Nitric Oxide Synthase Inhibitor, in Dog and Rabbit (니트릭옥사이드의 합성 억제제인 $N^G$-니트로-L-아르기닌의 신장작용)

  • Ko, Suk-Tai;Yu, Kang-Jun;Hwang, Myung-Sung
    • YAKHAK HOEJI
    • /
    • v.42 no.5
    • /
    • pp.519-526
    • /
    • 1998
  • This study was performed in order to investigate the effect of renal function of NG-nitro-L-arginine (L-NOARG), inhibitor of nitric oxide (NO) synthase, in dog and ra bbit. L-NOARG, when given intravenously in dogs, exhibited the decrease in urine flow (vol), renal plasma flow (RPF), osmolar clearance ($C_{osm}$) and amounts of sodium and potassium excreted in urine($E_{Na},\;E_K$). These renal functions of L-NOARG showed the same aspect in rabbit, too. L-NOARG, when administered into a renal artery, showed the same pattern as was obtained when given intravenously in both experimental and control kidney in dog. L-NOARG administered into the carotid artery showed the decrease in Vol, RPF, $E_{Na}$, in a low doses that did not show any effect when given intravenously. Above results suggest that L-NOARG produces antidiuretic action in dog and rabbit, and these antidiuretic actions may be mediated by central action.

  • PDF

Differential Effects of Nitric Oxide Synthase Inhibitors in Rats

  • Lee, Jun-Hee;Shin, Chang-Yell;Kang, Bong-Su;Jeong, Ji-Hoon;Choi, Kyeong-Bum;Min, Young-Sil;Kim, Jin-Hak;Huh, In-Hoi;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.2
    • /
    • pp.99-104
    • /
    • 2000
  • We investigated the action of NOS inhibitors on NOS in rats. Both of nitric oxide synthase inhibitors, $N^G$-monomethyl-L-arginine $(L-NMMA,\;3\;{\mu}M)$ or $N^G$-nitro-L-arginine methylester $(L-NAME,\;30\;{\mu}M),$ augmented phenylephrine $(PE,\;10^{-7}\;M)-induced$ contraction which was inhibited by acetylcholine (ACh) in rat thoracic aorta. This augmentation by L-NAME or L-NMMA was attenuated with the treatment of NO precursor, arginine. ACh, however, decreased the augmentation induced by L-NMMA, but not by L-NAME. Superoxide dismutase (SOD, 50 u/ml) potentiated an inhibitory effect of ACh on the PE $(10^{-7}\;M)-induced$ contraction. It has been known that platelet activating factor itself induces iNOS. Platelet activating factor $(PAF,\;10^{-7}\;M)$ inhibited PE $(10^{-7}\;M)-induced$ contraction. Pretreatment with L-NMMA (30 mM) or L-NAME (30 mM) significantly blocked the inhibitory action of PAF on PE-induced contraction. L-NMMA (100 mM) or L-NAME (100 mM) reduced nerve conduction velocity (NCV) relevant to nNOS in rat sciatic nerve. ACh attenuated the reduction of NCV by L-NMMA-, but not by L-NAME-induced reduction of NCV. These results suggest that L-NMMA and/or L-NAME have different action on three types of NOS in rats.

  • PDF

Protective Mechanism of Nitric Oxide and Mucus against Ischemia/Reperfusion-Induced Gastric Mucosal Injury

  • Kim, Hye-Young;Nam, Kwang-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.511-519
    • /
    • 1998
  • This study investigated the role of nitric oxide on the oxidative damage in gastric mucosa of rats which received ischemia/reperfusion and its relation to mucus. Nitric oxide synthesis modulators such as L-arginine and $N^G-nitro-L-arginine$ methyl ester, and sodium nitroprusside, a nitric oxide donor, were injected intraperitoneally to the rats 30 min prior to ischemia/reperfusion which was induced by clamping the celiac artery and the superior mesenteric artery for 30 min and reperfusion for 1 h. Lipid peroxide production, the contents of glutathione and mucus, and glutathione peroxidase activities of gastric mucosa were determined. Histological observation of gastric mucosa was performed by using hematoxylin-eosin staining and scanning electron microscopy. The result showed that ischemia/reperfusion increased lipid peroxide production and decreased the contents of glutathione and mucus as well as glutathione peroxidase activities of gastric mucosa. Ischemia/reperfusion induced gastric erosion and gross epithelial disruption of gastric mucosa. Pretreatment of L-arginine, a substrate for nitric oxide synthase, and sodium nitroprusside prevented ischemia/reperfusion-induced alterations of gastric mucosa. However, $N^G-nitro-$ L- arginine methyl ester, a nitric oxide synthase inhibitor, deteriorated oxidative damage induced by ischemia/reperfusion. In conclusion, nitric oxide has an antioxidant defensive role on gastric mucosa by maintaining mucus, glutathione, and glutathione peroxidase of gastric mucosa.

  • PDF

Vasorelaxant and hypotensive effects of trazodone in Guinea pig (기니픽에서 trazodone의 혈관 이완 및 혈압 하강 효과)

  • Kim, Shang-Jin;Kang, Hyung-Sub;Kim, Jin-Shang
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.4
    • /
    • pp.485-493
    • /
    • 2005
  • We studied the effects of trazodone on arterial blood pressure in anesthesized guinea pigs, and on vascular responses in isolated thoracic aorta. Trazodone produced a concentration-dependent relaxation in phenylephrine-precontracted endothelium intact (+E) rings, but not in a KCl-precontracted aortic rings. These relaxant effects of trazodone on +E rings were significantly greater than those on denuded (-E) rings. The trazodone-induced relaxation was suppressed by glibenclamide and tetrabutylammonium, but not by N(G)-nitro-L-arginine (L-NNA), N(omega)-nitro-L-arginine methyl ester (L-NAME), methylene blue (MB), nifedipine, indomethacin, 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC) and clotrimazole. In vivo, infusion of trazodone elicited a significant decrease in arterial blood pressure. Trazodone-induced blood pressure lowering was markedly inhibited by intravenous pretreatment of prazosin but not by pretreatment of saponin, L-NNA, L-NAME, MB, nifedipine, glibenclamide, clotrimazole and NCDC. In addition, trazodone produced an increase in twitch force of isolated papillary muscle and left ventricular pressure of perfused heart. These findings suggest that the endothelium-independent vasorelaxant effect of trazodone may be explained by activation of $Ca^{2+}$-activated and ATP-sensitive $K^+$ channels, and the hypotensive effect of trazodone is not associated with cardiac contraction.

Role of Endogenous Nitric Oxide in the Control of Renin Release

  • Lee, Je-Jung;Kim, Dong-Ho;Kim, Young-Jae;Kim, Won-Jae;Yoo, Kwang-Jay;Choi, Ki-Chul;Lee, Jong-Eun
    • The Korean Journal of Physiology
    • /
    • v.28 no.2
    • /
    • pp.225-231
    • /
    • 1994
  • The present study was undertaken to investigate the role of endogenous nitric oxide in renin release under different physiological conditions. In the first series of experiments, renin release was either inhibited by acute volume-expansion (VE) or stimulated by clipping one renal artery in the rat. VE was induced by intravenous infusion of saline (0.9% NaCl) up to 5% of the body weight over 45 min under thiopental (50 mg/kg, IP) anesthesia. VE caused a decrease of plasma renin concentration (PRC). With $N^G-nitro-L-arginine$ methyl ester $(L-NAME,\;5\;{\mu}g/kg\;per\;min)$ superadded to VE, PRC decreased further. The magnitude of increase in plasma atrial natriuretic peptide levels following VE was not affected by the L-NAME. In two-kidney, one clip rats, L-NAME-supplementation resulted in a decrease, and L-arginine-supplementation an increase of PRC. Plasma atrial natriuretic peptide levels were significantly lower in the L-arginine group than in the control. Blood pressure did not differ among the L-NAME, L-arginine, and control groups. In another series of experiments, the renin response to a blockade of NO synthesis was examined using in vitro preparations from isolated renal cortex. L-NAME significantly increased basal renin release, although it was without effect on the isoproterenol-stimulated release. These findings suggest that endogenous nitric oxide significantly contributes to the renin release. Since many factors may affect the renin release in vivo, an interaction between NO and renin under various pathophysiological states is to be further defined.

  • PDF

Blunted Indomethacin-Induced Downregulation of Aquaporins by Nitric Oxide Synthesis Inhibition in Rats

  • You, Ju-Hee;Lee, Sung-Su;Bae, Eun-Hui;Ma, Seong-Kwon;Kim, Soo-Wan;Lee, Jong-Un
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.4
    • /
    • pp.213-216
    • /
    • 2006
  • The present study was aimed to determine whether nitric oxide (NO) plays a role in the regulation of aquaporin (AQP) channels in the kidney. Male Brattleboro rats ($250{\sim}300\;g$ body weight) were used. The experimental group was treated with $N^G$-nitro-L-arginine methyl ester (L-NAME, 100 mg/L drinking water) for 1 week, and cotreated with indomethacin (5 mg/kg, twice a day, i.p.) for the last two days. Control groups were treated with either L-NAME for 1 week, indomethacin for 2 days, or without any drug treatment. The abundance of AQP1, AQP2 and AQP3 proteins in the kidney was determined by Western blot analysis. Indomethacin downregulated AQP channels, whereas L-NAME by itself showed no significant effects on them. The indomethacin-induced downregulation of AQP2 and AQP3 was significantly blunted in L-NAME-treated rats, while that of AQP1 was not affected. These results suggest that endogenous NO, when stimulated, may downregulate AQP channels that are specifically regulated by AVP/cAMP pathway in the kidney.