• Title/Summary/Keyword: $N^G$-nitro-L-arginine

Search Result 92, Processing Time 0.779 seconds

Nitric Oxide의 합성 억제제인 N$_G$-Nitro-L-Arginine의 항이뇨작용 기전에 관한 연구 (Studies on Mechanism of Antidiuretic Action of N$_G$ Nitro-L-Arginine, Nitric Oxide Synthase Inhibitor, in Dog)

  • 고석태;유강준
    • Biomolecules & Therapeutics
    • /
    • 제6권3호
    • /
    • pp.225-231
    • /
    • 1998
  • This studies were performed for investigation of mechanism on central antidiuretic action of L$_{G}$-Nitro-L-arginine (L-NOARG), nitic oxide systhase inhibitor, in dog. Antidiuretic action of L-NOARG infused into the carotid artery was not affected by renal denervation but inhibited by pretreatment with arginine, NO Precusor. Furthermore, L-NOARG inhibited the diuretic action of dopamine induced by hemodynamic development. Above results suggest that antidiuretic actions of L-NOARG mediated by endogenous substances not associated with renal nerve. Therefore, it is demonstrated that those endogenous substances might be associated with NO which mediate the diuretic action of dopamine.e.

  • PDF

위선세포의 항산화 방어기전으로의 Nitric Oxide의 역할 (Role of Nitric Oxide as an Antioxidant in the Defense of Gastric Cells)

  • 김혜영;이은주;김경환
    • 대한약리학회지
    • /
    • 제32권3호
    • /
    • pp.389-397
    • /
    • 1996
  • 위점막은 위강내에서 생성되는 독성이 강한 활성산소종에 노출된다. Nitric oxide는 glutathione의 항상성을 유지시킴으로써 acetaminophen 유도 간독성에 대한 보호효과를 나타내었다. 본 연구는 hydrogen peroxide로 인한 위선세포 손상에 대한 nitric oxide의 작용을 규명하고자 하였다. Hydrogen peroxide는 ${\beta}-D-glucose$와 glucose oxidase의 반응에 의해 생성시켰으며, 위선세포에 L-arginine, $N^{G}-nitro-L-arginine$ methyl ester 및 $N^G-nitro-L-arginine$을 전처리 한 후, 세포외로 유리되는 지질과산화물 및 nitrite를 정량하고 세포내 glutathione 함량을 측정하였다. 결과로서, glucose/glucose oxidase를 처리한 경우 glucose oxidase 농도의존적으로 지질과산화물 생성은 증가되었으며, nitrite 유리 및 glutathione 함량은 감소되었다. NO synthase의 기질인 L-arginine 전처리시 glucose/glucose oxidase에 의한 지질과산화 및 nitrite 유리 증가와 세포내 glutathione 감소등이 방지되었다. $N^G-nitro-L-arginine$ methyl ester 및 $N^G-nitro-L-arginine$등 NO synthase 억제제들은 세포손상에 보호효과를 나타내지 않았다. 결론적으로 nitric oxide는 hydrogen peroxide로 인한 세포손상에 대한 보호효과가 없으며, 이는 지질과산화 반응 및 세포내 glutathione 고갈등을 억제시킴으로써 이루어진다고 사료된다.

  • PDF

Stimulatory Effect of Ginseng Saponin on Endogenous Production of Nitic Oxide

  • Kim, Hye-Young
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.199-207
    • /
    • 1998
  • Ginseng saponin (G5) purified from Panax ginseng, increase renal blood flow in rats. Nitric oxide (NO) is thought to be a substance endogenously released by G5 in preconstricted lungs and cultured endothelial cells. The present study aims to determine whether G5 could stimulate endogenous 1'elease of NO in rat kidney and urine levels of the stable NO metabolites, nitrite (NO,) and nitrate (NO,) and urinary COMP levels were measured 8 hr after a single intraperitoneal injection of GS (200 mg/kg) Into rats. The effects of the WO synthesis inhibitor, Nu-nitro-L-arginine methyl ester, .1nd the NO precursor, L-arginine, on the G5-induced changes were also determined. The activity of NO synthase, as determined by conversion of ('"C)-L-arginine to ('"C)-L-citrulline, in whole kidney, glomeruli and cortical tubules were also investigated. A single injection of GS resulted in endogenous production of NO as reflected by increase in serum and urine levels of N021N03 and urinary cGMP levels, which were inhibited by the addition o ( N-nitro-L-arginine methyl ester and restored fly L-arginine. GS also stimulated the activity of NO synthase in whole kidney as well as glomeruli and cortical tubules, and Nu-nitro-L-arginine methyl tilter significantly prevented this increase. In conclusion, GS stimulates endogenous NO production and thus, may play a protective role 1 11 the kidney by modulating renal blood flow.

  • PDF

Another Evidence for Nitric Oxide as Mediator of Relaxation of Isolated Rabbit and Human Corpus Cavernosum

  • Chang, Ki-Churl
    • Biomolecules & Therapeutics
    • /
    • 제2권2호
    • /
    • pp.136-140
    • /
    • 1994
  • To prove the hypothesis that NO- and N $O_2$-carrying molecules potentiate photorelaxation by generating NO, investigation was carried out using isolated rabbit and human corpus cavernosum. Corporal smooth muscle, in the presence or absence of endothelium, relaxed only slightly upon ultraviolet light (366 nm) irradiation. But, NO-and/or N $O_2$-containing compounds such as streptozotocin and $N^{G}$-nitro-L-arginine methyl ester significantly (p<0.01) enhanced photorelaxation in this tissue. In addition, $N^{G}$-nitro-D-arginine methyl ester, known to lack inhibitory action on NO synthase, showed concentration-dependent potentiation of the photorelaxation. Oxygen radical generating system via copper+ascorbic acid and guanylate cyclase inhibitor, methylene blue, significantly (p<0.05) inhibited the streptozotocin-potentiated photorelaxation. Nitrite was accumulated by photolysis of streptozotocin, $N^{G}$-nitro-L-arginine methyl ester and $N^{G}$-nitro-D-arginine methyl ester, in a concentration and exposure time dependent manner. These observations indicate that NO is a potent relaxant of rabbit and human corpus cavernosum and further support the hypothesis that NO is released by photolysis from NO- and N $O_2$-carrying molecules.lecules.

  • PDF

니트릭옥사이드의 합성 억제제인 $N^G$-니트로-L-아르기닌의 신장작용 (Renal Action of $N^G$-Nitro-L-arginine, Nitric Oxide Synthase Inhibitor, in Dog and Rabbit)

  • 고석태;유강준;황명성
    • 약학회지
    • /
    • 제42권5호
    • /
    • pp.519-526
    • /
    • 1998
  • This study was performed in order to investigate the effect of renal function of NG-nitro-L-arginine (L-NOARG), inhibitor of nitric oxide (NO) synthase, in dog and ra bbit. L-NOARG, when given intravenously in dogs, exhibited the decrease in urine flow (vol), renal plasma flow (RPF), osmolar clearance ($C_{osm}$) and amounts of sodium and potassium excreted in urine($E_{Na},\;E_K$). These renal functions of L-NOARG showed the same aspect in rabbit, too. L-NOARG, when administered into a renal artery, showed the same pattern as was obtained when given intravenously in both experimental and control kidney in dog. L-NOARG administered into the carotid artery showed the decrease in Vol, RPF, $E_{Na}$, in a low doses that did not show any effect when given intravenously. Above results suggest that L-NOARG produces antidiuretic action in dog and rabbit, and these antidiuretic actions may be mediated by central action.

  • PDF

Differential Effects of Nitric Oxide Synthase Inhibitors in Rats

  • Lee, Jun-Hee;Shin, Chang-Yell;Kang, Bong-Su;Jeong, Ji-Hoon;Choi, Kyeong-Bum;Min, Young-Sil;Kim, Jin-Hak;Huh, In-Hoi;Sohn, Uy-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권2호
    • /
    • pp.99-104
    • /
    • 2000
  • We investigated the action of NOS inhibitors on NOS in rats. Both of nitric oxide synthase inhibitors, $N^G$-monomethyl-L-arginine $(L-NMMA,\;3\;{\mu}M)$ or $N^G$-nitro-L-arginine methylester $(L-NAME,\;30\;{\mu}M),$ augmented phenylephrine $(PE,\;10^{-7}\;M)-induced$ contraction which was inhibited by acetylcholine (ACh) in rat thoracic aorta. This augmentation by L-NAME or L-NMMA was attenuated with the treatment of NO precursor, arginine. ACh, however, decreased the augmentation induced by L-NMMA, but not by L-NAME. Superoxide dismutase (SOD, 50 u/ml) potentiated an inhibitory effect of ACh on the PE $(10^{-7}\;M)-induced$ contraction. It has been known that platelet activating factor itself induces iNOS. Platelet activating factor $(PAF,\;10^{-7}\;M)$ inhibited PE $(10^{-7}\;M)-induced$ contraction. Pretreatment with L-NMMA (30 mM) or L-NAME (30 mM) significantly blocked the inhibitory action of PAF on PE-induced contraction. L-NMMA (100 mM) or L-NAME (100 mM) reduced nerve conduction velocity (NCV) relevant to nNOS in rat sciatic nerve. ACh attenuated the reduction of NCV by L-NMMA-, but not by L-NAME-induced reduction of NCV. These results suggest that L-NMMA and/or L-NAME have different action on three types of NOS in rats.

  • PDF

Protective Mechanism of Nitric Oxide and Mucus against Ischemia/Reperfusion-Induced Gastric Mucosal Injury

  • Kim, Hye-Young;Nam, Kwang-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권4호
    • /
    • pp.511-519
    • /
    • 1998
  • This study investigated the role of nitric oxide on the oxidative damage in gastric mucosa of rats which received ischemia/reperfusion and its relation to mucus. Nitric oxide synthesis modulators such as L-arginine and $N^G-nitro-L-arginine$ methyl ester, and sodium nitroprusside, a nitric oxide donor, were injected intraperitoneally to the rats 30 min prior to ischemia/reperfusion which was induced by clamping the celiac artery and the superior mesenteric artery for 30 min and reperfusion for 1 h. Lipid peroxide production, the contents of glutathione and mucus, and glutathione peroxidase activities of gastric mucosa were determined. Histological observation of gastric mucosa was performed by using hematoxylin-eosin staining and scanning electron microscopy. The result showed that ischemia/reperfusion increased lipid peroxide production and decreased the contents of glutathione and mucus as well as glutathione peroxidase activities of gastric mucosa. Ischemia/reperfusion induced gastric erosion and gross epithelial disruption of gastric mucosa. Pretreatment of L-arginine, a substrate for nitric oxide synthase, and sodium nitroprusside prevented ischemia/reperfusion-induced alterations of gastric mucosa. However, $N^G-nitro-$ L- arginine methyl ester, a nitric oxide synthase inhibitor, deteriorated oxidative damage induced by ischemia/reperfusion. In conclusion, nitric oxide has an antioxidant defensive role on gastric mucosa by maintaining mucus, glutathione, and glutathione peroxidase of gastric mucosa.

  • PDF

기니픽에서 trazodone의 혈관 이완 및 혈압 하강 효과 (Vasorelaxant and hypotensive effects of trazodone in Guinea pig)

  • 김상진;강형섭;김진상
    • 대한수의학회지
    • /
    • 제45권4호
    • /
    • pp.485-493
    • /
    • 2005
  • We studied the effects of trazodone on arterial blood pressure in anesthesized guinea pigs, and on vascular responses in isolated thoracic aorta. Trazodone produced a concentration-dependent relaxation in phenylephrine-precontracted endothelium intact (+E) rings, but not in a KCl-precontracted aortic rings. These relaxant effects of trazodone on +E rings were significantly greater than those on denuded (-E) rings. The trazodone-induced relaxation was suppressed by glibenclamide and tetrabutylammonium, but not by N(G)-nitro-L-arginine (L-NNA), N(omega)-nitro-L-arginine methyl ester (L-NAME), methylene blue (MB), nifedipine, indomethacin, 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC) and clotrimazole. In vivo, infusion of trazodone elicited a significant decrease in arterial blood pressure. Trazodone-induced blood pressure lowering was markedly inhibited by intravenous pretreatment of prazosin but not by pretreatment of saponin, L-NNA, L-NAME, MB, nifedipine, glibenclamide, clotrimazole and NCDC. In addition, trazodone produced an increase in twitch force of isolated papillary muscle and left ventricular pressure of perfused heart. These findings suggest that the endothelium-independent vasorelaxant effect of trazodone may be explained by activation of $Ca^{2+}$-activated and ATP-sensitive $K^+$ channels, and the hypotensive effect of trazodone is not associated with cardiac contraction.

Role of Endogenous Nitric Oxide in the Control of Renin Release

  • Lee, Je-Jung;Kim, Dong-Ho;Kim, Young-Jae;Kim, Won-Jae;Yoo, Kwang-Jay;Choi, Ki-Chul;Lee, Jong-Eun
    • The Korean Journal of Physiology
    • /
    • 제28권2호
    • /
    • pp.225-231
    • /
    • 1994
  • The present study was undertaken to investigate the role of endogenous nitric oxide in renin release under different physiological conditions. In the first series of experiments, renin release was either inhibited by acute volume-expansion (VE) or stimulated by clipping one renal artery in the rat. VE was induced by intravenous infusion of saline (0.9% NaCl) up to 5% of the body weight over 45 min under thiopental (50 mg/kg, IP) anesthesia. VE caused a decrease of plasma renin concentration (PRC). With $N^G-nitro-L-arginine$ methyl ester $(L-NAME,\;5\;{\mu}g/kg\;per\;min)$ superadded to VE, PRC decreased further. The magnitude of increase in plasma atrial natriuretic peptide levels following VE was not affected by the L-NAME. In two-kidney, one clip rats, L-NAME-supplementation resulted in a decrease, and L-arginine-supplementation an increase of PRC. Plasma atrial natriuretic peptide levels were significantly lower in the L-arginine group than in the control. Blood pressure did not differ among the L-NAME, L-arginine, and control groups. In another series of experiments, the renin response to a blockade of NO synthesis was examined using in vitro preparations from isolated renal cortex. L-NAME significantly increased basal renin release, although it was without effect on the isoproterenol-stimulated release. These findings suggest that endogenous nitric oxide significantly contributes to the renin release. Since many factors may affect the renin release in vivo, an interaction between NO and renin under various pathophysiological states is to be further defined.

  • PDF

Blunted Indomethacin-Induced Downregulation of Aquaporins by Nitric Oxide Synthesis Inhibition in Rats

  • You, Ju-Hee;Lee, Sung-Su;Bae, Eun-Hui;Ma, Seong-Kwon;Kim, Soo-Wan;Lee, Jong-Un
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권4호
    • /
    • pp.213-216
    • /
    • 2006
  • The present study was aimed to determine whether nitric oxide (NO) plays a role in the regulation of aquaporin (AQP) channels in the kidney. Male Brattleboro rats ($250{\sim}300\;g$ body weight) were used. The experimental group was treated with $N^G$-nitro-L-arginine methyl ester (L-NAME, 100 mg/L drinking water) for 1 week, and cotreated with indomethacin (5 mg/kg, twice a day, i.p.) for the last two days. Control groups were treated with either L-NAME for 1 week, indomethacin for 2 days, or without any drug treatment. The abundance of AQP1, AQP2 and AQP3 proteins in the kidney was determined by Western blot analysis. Indomethacin downregulated AQP channels, whereas L-NAME by itself showed no significant effects on them. The indomethacin-induced downregulation of AQP2 and AQP3 was significantly blunted in L-NAME-treated rats, while that of AQP1 was not affected. These results suggest that endogenous NO, when stimulated, may downregulate AQP channels that are specifically regulated by AVP/cAMP pathway in the kidney.