• Title/Summary/Keyword: $Mn^{2+}$ ion

Search Result 594, Processing Time 0.033 seconds

Studies on Polyphenol Oxidase from Puerariae Radix (갈근 중의 Polyphenol Oxidase에 관한 연구)

  • Park, Soo-Sun;Kim, An-Keun;Lee, Jeong-Sin
    • Korean Journal of Pharmacognosy
    • /
    • v.22 no.2
    • /
    • pp.101-111
    • /
    • 1991
  • Polyphenol oxidase(PPO) was purified from an extract of Puerariae Radix by ammonium sulfate fractionation followed by Sephadex G-150 column chromatography, which resulted in a 56-fold increase in specific activity. The enzyme was optimum of pH 6.5. The optimum temperature of enzymic reaction was about $40^{\circ}$. The enzyme was thermostable with a half-life equal to 32 min at $70^{\circ}$. Km values of the PPO for catechol and pyrogallol from Lineweaver Burk plots were $1.3{\times}10^{-2}M$, $1.16{\times}10^{-2}M$, respectively. The substrate specificity of the Puerariae Radix PPO showed high affinity toward pyrogallol. Reducing reagents such as cysteine, potassium metabisulfite, ascorbic acid, 2-mercaptoethanol completely inhibited the PPO activity at $10^{-2}M$ level. Linewear-Burk analysis of inhibition data revealed that the inhibition by cysteine, 2-mercaptoethanol, 4-nitrocatechol, potassium cyanide was competitive with Ki values of $4.3{\times10^{-2}M,\;0.73{\times}10^{-6}M,\;6.9{\times}10^{-6}M,\;6.4{\times}10^{-7}M$, respectively. The browning reaction by PPO was observed to decrease temporarily with the addition of sodium diethyl dithiocarbamate, a well known copper chelating agent. Among the divalent cations, $Cu^{2+}$ ion was strong activator on PPO and $Mn^{2+},\;Co^{2+}$ ions was effect on PPO activity. $Zn^{2+},\;Mg^{2+}$ ions was inhibitor on PPO.

  • PDF

Mutational Analysis of an Essential RNA Stem-loop Structure in a Minimal RNA Substrate Specifically Cleaved by Leishmania RNA Virus 1-4 (LRV1-4) Capsid Endoribonuclease

  • Ro, Youngtae;Patterson, Jean L.
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.239-247
    • /
    • 2003
  • The LRV1-4 capsid protein possesses an endoribonuclease activity that is responsible for the single site-specific cleavage in the 5' untranslated region (UTR) of its own viral RNA genome and the formation of a conserved stem-loop structure (stem-loop IV) in the UTR is essential for the accurate RNA cleavage by the capsid protein. To delineate the nucleotide sequences, which are essential for the correct formation of the stem-loop structure for the accurate RNA cleavage by the viral capsid protein, a wildtype minimal RNA transcript (RNA 5' 249-342) and several synthetic RNA transcripts encoding point-mutations in the stem-loop region were generated in an in vitro transcription system, and used as substrates for the RNA cleavage assay and RNase mapping studies. When the RNA 5' 249-342 transcript was subjected to RNase T1 and A mapping studies, the results showed that the predicted RNA secondary structure in the stem-loop region using FOLD analysis only existed in the presence of Mg$\^$2+/ ions, suggesting that the metal ion stabilizes the stem-loop structure of the substrate RNA in solution. When point-mutated RNA substrates were used in the RNA cleavage assay and RNase T1 mapping study, the specific nucleotide sequences in the stem-loop region were not required for the accurate RNA cleavage by the viral capsid protein, but the formation of a stem-loop like structure in a region (nucleotides from 267 to 287) stabilized by Mg$\^$2+/ ions was critical for the accurate RNA cleavage. The RNase T1 mapping and EMSA studies revealed that the Ca$\^$2+/ and Mn$\^$2+/ ions, among the reagents tested, could change the mobility of the substrate RNA 5' 249-342 on a gel similarly to that of Mg$\^$2+/ ions, but only Ca$\^$2+/ ions identically showed the stabilizing effect of Mg$\^$2+/ ions on the stem-loop structure, suggesting that binding of the metal ions (Mg$\^$2+/ or Ca$\^$2+/) onto the RNA substrate in solution causes change and stabilization of the RNA stem-loop structure, and only the substrate RNA with a rigid stem-loop structure in the essential region can be accurately cleaved by the LRV1-4 viral capsid protein.

Human Neutrophil Elastase: Rapid Purification, Metal binding Stoichiometry and Modulation of the Activity by Chelating Agents (사람의 백혈구 내에 있는 Elestase: 순수부리, 금속이온의 화학량, 그리고 Chelating 효과에 의한 활성도 조절)

  • Kang, Koo-Il
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.111-123
    • /
    • 1988
  • Neutrophil elastases were purified by a three step procedure consiting of one Sephadex G-75 and two HPLC elutions. The elastases cross-reacted with antibodies to human neutrophil elastase. Three bands with molecular weights between 26,000 and 29,700 were observed by gel electrophoresis. At each stage of purification the quantity of Zn increased, reaching molar ratio of 2:1 with elastase in the most purified samples. Calcium content. was seletively elevated during the earlier stages of purification but decreased to a ratio of 0.25 to 1 with elastase at the final step of purfication. Neutrophil elastase could be inhibited by EDTA, EGTA and 1,10-phenanthroline. EGTA inhbition was noncompetitive inhibition and reversible only if the time of preincubation was relatively short, indicating the instability of the apoenzyme. The concentration of chelator required to show significant inhibition of elastase was also dependent upon the stage of purity and the ionic strength of the reaction mixture. Inhibition by EGTA, followed by the removal of EGTA, could be reversed by Zn. In the presence of EGTA the enzyme could be returened to full activity by the addition of Zn, Mn and Ca, but not Mg or Na. All of the above evidence strongly supports human neturophil elastase could be a metalloenzyme as well as a serine protease.

  • PDF

Purification and Properties of a Cysteinylglycinase from Proteus mirabilis (Proteus mirabilis가 생산하는 Cysteinylglycinase의 정제 및 성질)

  • Choi, Shin-Yang;Yu, Ju-Hyun;Hidehiko Kumagai;Tatsrokuro Tochikura
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.2
    • /
    • pp.92-97
    • /
    • 1988
  • Cysteinylglycinase was partially purified from Proteus mirabilis by consecutive procedure. The specific activity was increased about 16-fold to that of cell-free extract. The enzyme was found rather unstable on ammonium sulfate precipitation ann the precipitated enzyme protein became partially insoluble during dialysis. The precipitated enzyme was found to be solubilized by treatment of 4% Triton X-100 effectiviely, The optimum temperature and pH of the enzyme activity were 35$^{\circ}C$ and 7.3, respectively. After heat treatment of the enzyme at 5$0^{\circ}C$ for 30 min, it lost the activity to 70%. The enzyme was stable at pH 7.0-8.0. The molecular weight of the cysteinylglycinase was found to be about 190,000 by Sephadex G-150 gel filtration. The enzyme was activated by the addition of Mn$^{2+}$ and $Mg^{2+}$ ions. The maximal activation was obtained in preincubation with $Mg^{2+}$ ion for 30 min. The enzyme catalyzed the hydrolysis of various dipeptides and tripeptides. The Km and Vmax values for cysteinylglycine were 1.60 mM and 0.24 m unit/ mg, respectively.

  • PDF

Emulsion Liquid Membrane Transport of Heavy Metal Sons by Macrocyclic Carriers (거대고리 운반체에 의한 중금속이온의 에멀죤 액체막 수송)

  • 정오진
    • Journal of Environmental Science International
    • /
    • v.4 no.2
    • /
    • pp.223-232
    • /
    • 1995
  • New two macrocyclic compounds using as carriers of liquid emulsion menbrame, have been synthesized. These reuslts provide evidance for the usefulness of the theory in designing the systems. The efficiency of selective transport for heavy metal ions have been discussed from the membrane systems that make use of $SCN^-$,<>,$I^-$,CN- and $Cl^-$ ion as co-anions in source phase and make use of $S_2O_3^{2-}$ and $P_2O_7^{4-}$ ion as receiving phase, respectively. The transport rate of M(II) was highest when a maximum amount of the M(II) in the source phase was present as$Cd(SCN)_2$$(P[SCN^-]= 0.40M)$, $Hg(SCN)_2([SCN^-]=0.40M)$ and Pd(CN)$([CN^-]= 0.40M)$. The Cd(II) and Pb(II) over each competitive cations were well transprted with 0.3M-S2032- and 0.3M-P2O74-, respectively in the receiving phase. Results of this study indicate that two criteria must be met in order to have effective macrocycle-mediated transport in these emulsion system. First one must effective extraction of the $M^{n+}$ into the toluene systems. The effectiveness of this extraction is the greatest if locK for $M^{n+}$macrocycle interaction is large and if the macrocycle is very insoluble in the aqueous phase. Second, the ratio of the locK values (or Mn+-receiving phase ($S_2O_3^{2-}$- or $P_2O_7^{4-}$) to $M^{n+}$-macrocycle (($L_1$이나 $L_2$) interaction must be large enough to ensure quantitative stripping of Mn+(($Cd^{2+}$,$Pb^{2+}$)at the toluene receiving Phase interface. $L_1$(3.5-benzo-10,13,18,21-tetraoxa-1,7,diazabicyclo(8,5,5) eicosan) forms a stable ($Cd^{2+}$ and >,$Pb^{2+}$ complexes and $L_1$ is very insoluble in water and its $Cd^{2+}$ and >,$Pb^{2+}$ complex is considerably less stable than $Cd^{2+}$-(S2O3)22- and $Pd^{2+}-P_2O_7^{4-}$ complexes. On the other hand, the stability of the $Hg^{2+}$)+-$L_1$( complex exceed that of the $Hg^{2+}$- (S2O3)22- and Hg2+-P2O74-, and the distribution coefficient of $L_2$(5,8,15,18,23,26-hexaoxa-1,12- diazabicyclo-(10,8,8) octacosane) is much smaller than that of $L_1$. Therefore, the partitioning of Lr is favored by the aqueous receiving Phase, and little heavy metal ions transport is seen despite the large logK for $Hg^{2+}$+-$L_1$ and $Mn^+$($Cd^{2+}$+, $Pb^{2+}$+ and $Hg^{2+}$)-$L_2$ interactions. Key Words : macrocycles, transport, heavy metal, co-anion, source phase, receiveing, complex separation, interaction, destribution coefficient.

  • PDF

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF

Health Risk Assessment of Heavy Metals in PM2.5 in Industrial Areas (일부 공단지역 PM2.5에 부착된 중금속 노출에 의한 건강위해성평가)

  • Jeon, Jun-Min;Kang, Byungb-Wook;Lee, Hak-Sung;Lee, Cheol-Min
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.4
    • /
    • pp.294-305
    • /
    • 2010
  • This study estimated the health risk of heavy metals in particulate matter $(PM)_{2.5}$ in a Gwangyang industrial complex. The $PM_{2.5}$ containing heavy metal was collected from January to November, 2008 using a denuder air sampler and by IC (Ion Chromatograph). The risk assessment was performed in a four-step process; hazard identification, exposure assessment, dose-response assessment and risk characterization. In the hazard identification process, $Cr^{6+}$, Ni, As, and Pb were categorized as human carcinogens and probable human carcinogens, while Ti, Mn, Se, P, $Cr^{3+}$, Cu, and Zn were not classified as human carcinogens. It was found that the excess cancer risk by Central Tendency Exposure (CTE) of $Cr^{6+}$ and As in $PM_{2.5}$ was > $10^{-6}$, and the total excess cancer risk posed by carcinogen heavy metals in $PM_{2.5}$ was > $10^{-6}$. It was also determined that the total hazard index by CTE of non-carcinogen heavy metals in $PM_{2.5}$ was <1. Taken together, these results indicate a high cancer risk associated whit inhalation of heavy metal-containing$PM_{2.5}$ in industrial areas.

Elemental Composition and Source Identification of PM2.5 in Jeju City (제주시 미세먼지(PM2.5)에 함유된 원소의 조성특성 및 오염원)

  • Lee, Ki-Ho;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.543-554
    • /
    • 2018
  • From November 2013 to December 2016, ambient fine particulate matter ($PM_{2.5}$) was sampled in the downtown area of Jeju City, South Korea, which has seen rapid urbanization. The atmospheric concentrations of elements were measured in the $PM_{2.5}$ samples. This study focused on Cd, Cr, Cu, Mn, Ni, Pb, As, Sb, Sn, V, and Zn. The concentrations of Al, Na, K, Fe, Ca, Mg, Sr, and La were also obtained for reference. The objectives of this study were to examine the contributions of these elements to $PM_{2.5}$ concentrations in downtown Jeju City, and to investigate the inter-element relationships and the elemental sources by using enrichment factors and principal components analysis (PCA). A composition analysis showed that the 19 elements constituted 6.65 % of the $PM_{2.5}$ mass, and Na, K, Al, Fe, Ca, Mg, and Zn constituted 98 % of the total ion mass. Seasonal trend analysis for the sampling period indicated that the concentrations of the elements increased from November to April. However, no substantial seasonal variations were found in the concentrations of the elements. The composition ratios of some elements (Cu/Zn, Cu/Cd, Cu/Pb, V/Ni, and V/La) were found to be out of range when compared to the literature from other urban areas. The ratios between the elements and the PCA results showed that local contaminant sources in Jeju City rarely influence the composition of $PM_{2.5}$. This suggests that the major sources of $PM_{2.5}$ in Jeju City may include long-range transport of fine particulate matter produced in other areas.

A Study of Properties and Coating Natural Mineral Pumice Powder of in Korea (한국산 천연 광물 부석 파우더 코팅 및 특성에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.498-506
    • /
    • 2019
  • This study is based on a coating method that provides utilization value as a micronised powder for cosmetic raw materials using natural minerals buried in Bonghwa, Gyeongsangbuk-do in Korea. The mineral powder name is called Buseok, and chemical name is pumice powder. The results of a study on the efficacy of cosmetics are reported by the development of particulate powder to assess the performance of this powder. First of all, in order to coat the surface of this powder with oil, aluminum hydroxide was coated on the particulate surface and then coated with alkylsilan. In addition, it was coated with vegetable oil to prevent condensation of the powder and increase the dispersion in the oil phase. First; the particle size of pumice powder was from 10 to 50mm having porous holes on the surface of the particles. Second; The components of this powder contained $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$. Third: The particles of this powder have a planetary structure and are reddish-brown with porosity through SEM and TEM analysis. Fourth; the far-infrared radiation rate of this parabolic powder was $0.924{\mu}m$, and the radiative energy was $3.72{\times}102W/m^2$ and ${\mu}m$. In addition, the anion emission is 128 ION/cc, which shows that the coating remains unchanged. Based on these results, it is expected to be widely applied to basic cosmetics such as BB cream, cushion foundation, powderfect, and other color-coordinated cosmetics, sunblock cream, wash-off massage pack as an application of cosmetics. (Small and Medium Business Administration: S2601385)

Study on Selective Lithium Leaching Effect on Roasting Conditions of the Waste Electric Vehicle Cell Powder (폐전기차 셀분말의 열처리 조건에 따른 선택적 리튬침출 연구)

  • Jung, Yeon Jae;Son, Seong Ho;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2019
  • Recently, the use of lithium ion battery(LIB) has increased. As a result, the price of lithium and the amount spent lithium on ion battery has increased. For this reason, research on recycling lithium in waste LIBs has been conducted1). In this study, the effect of roasting for the selective lithium leaching from the spent LIBs is studied. Chemical transformation is required for selective lithium leaching in NCM LiNixCoyMnzO2) of the spent LIBs. The carbon in the waste EV cell powder reacts with the oxygen of the oxide at high temperature. After roasting at 550 ~ 850 ℃ in the Air/N2 atmosphere, the chemical transformation is analysed by XRD. The heat treated powders are leached at a ratio of 1:10 in D.I water for ICP analysis. As a result of XRD analysis, Li2CO3 peak is observed at 700 ℃. After the heat treatment at 850 ℃, a peak of Li2O was confirmed because Li2CO3 is decomposed into Li2O and CO2 over 723 ℃. The produced Li2O reacted with Al at high temperature to form LiAlO2, which does not leach in D.I water, leading to a decrease in lithium leaching ratio. As a result of lithium leaching in water after heat treatment, lithium leaching ratio was the highest after heat treatment at 700 ℃. After the solid-liquid separation, over 45 % of lithium leaching was confirmed by ICP analysis. After evaporation of the leached solution, peak of Li2CO3 was detected by XRD.