• Title/Summary/Keyword: $Mg_2Si$ phase

Search Result 210, Processing Time 0.023 seconds

Fabrication and Optical Characterization of Glass-ceramics for IR Reflector (적외선 반사체용 결정화유리 제조 및 광학적 특성평가)

  • 박규한;신동욱;변우봉
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1137-1143
    • /
    • 2001
  • In this study, glass-ceramics containing cordierite(2MgO$.$2Al$_2$O$_3$5SiO$_2$) as a major crystalline phase was prepared from MAS (MgO-Al$_2$O$_3$-SiO$_2$) glass system for the application to reflector. Glasses prepared with addition of TiO$_2$as a nucleating agent were crystallized by two-step heat treatment of nucleation and crystal growth. Then nucleation and crystal growth behavior were investigated and the influence of heat treatment schedule on the nature of crystal phases and the diffuse reflectance spectrum was investigated. As a result, cordierite and rutile were precipitated as a major crystalline phases for the glass-ceramics with the nucleation at 750$^{\circ}C$ for 3 hours and then crystallization at 1100$^{\circ}C$ for 5 hours, and this glass-ceramics showed the reflectance over 90% in 570∼2500nm specturm region.

  • PDF

The isochrones for the various abundance of C, N, O, Na, Mg, Al, Si, and Fe

  • Beom, Minje;Lee, Young-Wook;Ferguson, Jason W.;Kim, Yong-Cheol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.89.2-89.2
    • /
    • 2015
  • This research is to study the effects of individual metal elements(C, N, O, Na, Mg, Al, Si, and Fe) on the standard stellar models. The mixtures of the stellar models have been constructed to analyze the stars, extremely changed in the abundance of these elements. Therefore the mixture are based on the recent observation of stars in globular clusters. And the mass and metallicity grids have been decided in range $0.7{\sim}1.0M_{\odot}$ and 0.0002 ~ 0.007, respectively. The evolutionary tracks and isochrones, as well as the physical changes at each evolutionary phase, have been analyzed. Consequently, we present the mechanisms of the physical changes at each phase, and the quantified effects of the individual elements.

  • PDF

Effect of process conditions on crystal structure of Al PEO coating. II. Bipolar and electrolyte (알루미늄 PEO 코팅의 결정상에 미치는 공정 조건에 대한 연구 II. Bipolar 펄스와 전해액)

  • Kim, Bae-Yeon;Ham, Jae-Ho;Lee, Deuk Yong;Kim, Yong-Nam;Jeon, Min-Seok;Kim, Kiyoon;Choi, Ji-Won;Kim, Sung Youp;Kim, Kwang Youp
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.65-69
    • /
    • 2014
  • Crystallographic phases of Plasma electrolytic oxidized Al alloy, A1100, A5052, A6061, A6063, A7075, were investigated. Two types of electrolyte $Na_2Si_2O_3$ and Na2P2O7 were also compared. Bipolar pulse, $2000{\mu}sec$ with $400{\mu}sec+420V$ impulse and $300{\mu}sec$ - impulse were applied for 20 min. ${\alpha}-alumina$, ${\gamma}-alumina$, ${\eta}-alumina$, $Al_{4.95}Si_{1.05}O_{9.52}$, and $(Al_{0.9}Cr_{0.1})_2O_3$ were mainly observed. Si, component of electrolyte, were moved into the PEO layer by bipolar pulse. Glassy phase was also observed at the surface of $Na_2Si_2O_3$ electrolyte treated PEO layer, and increased with the Mg content of Al alloy. It is concluded that at first glassy phase was formed by the micro plasma, and the high temperature of plasma turns glassy phase to several crystalline phases. And we could expect that many other crystalline phase could be formed by PEO process.

Characterization of Cordierite by SEM, Microanalysis X and TEM (SEM, X선 마이크로 분석기, TEM에 의한 코디에라이트의 특성 연구)

  • Han, Byoung-Sung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1250-1254
    • /
    • 1990
  • The cordierite (MgO, SiO2, Al2O3) is of great interest for microelectronic packaging of integrated circuits. Its main advantages are low dielectric constant and low thermal expansion. The cordierite precursor is obtained by sol-gel synthesis using organic and inorganic compounds. The obtained cordierite precursor is an amorphous state at about 900\ulcorner. Green and fired cordierite samples were studied by SEM. Microanalysis X and TEM for microscopic properties. The fired cordierite shows forte diminution of Mg in comparison with its value at volume and the deficit of Mg compensates by sugmentation of Al and Si \ulcornercordierite and \ulcornercordierite are present near the surface (< 100) and small quantities of magnesium aluminate (MgAl2O4)is presented spinnel phase.

  • PDF

The Synthesis of Vanadium-Doped Forsterite by the $H_2O_2$-Assisted Sol-Gel Method, and the Growth of Single Crystals of Vanadium-Doped Forsterite by the Floating Zone Method

  • 박동곤;Mikio Higuchi;Rudiger Dieckmann;James M. Burlitch
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.927-933
    • /
    • 1998
  • Polycrystalline powder of vanadium-doped forsterite (Vδ $Mg_2SiO_4$) was synthesized by the $H_2O_2$-assisted sol-gel method. The vanadium dopant, which was added as VO$(OMe)_3$ in methanol, went through several redox reactions as the sol-gel reaction proceeded. Upon adding VO$(OMe)_3$ to a mixture of $Mg(OMe)_2$ and Si$(OEt)_4$ in methanol, V(V) reduced to V(IV). As hydrolysis reaction proceeded, the V(IV) oxidized all back to V(V). Apparently, some of the V(V) reduced to V(IV) during subsequent gelation by condensation reaction. The V(IV) remained even after heat treatment of the gel in highly oxidizing atmosphere. The crystallization of the xerogel around 880 ℃ readily produced single phase forsterite without any minor phase. Using the polycrystalline powder as feeding stock, single crystals of vanadium-doped forsterite were grown by the floating zone method in oxidizing or reducing atmosphere. The doping was limited in low level because of the high partitioning of the vanadium in liquid phase during melting. The greenish single crystal absorbed visible light of 700∼1100 nm. But, no emission was obtained in near infrared range.

Characterization of Solidification and Microstructure of an Al-Zn-Mg-Si Alloy

  • He Tian;Dongdong Qu;Zherui Tong;Nega Setargew;Daniel J. Parker;David StJohn;Kazuhiro Nogita
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.104-112
    • /
    • 2024
  • Al-Zn-Mg-Si alloy coatings have been developed to inhibit corrosion of cold rolled steel sheets, and an understanding of the alloy system helps prevent coating defects. We used a Bridgman furnace to characterise the nature and formation mechanisms of the phases present in the quaternary system with 0.4 wt% Fe. In the directional solidification experiments we imposed steep temperature gradients and varied the pull rate. After the samples were quenched in the furnace, detailed characterization of the samples was carried out by electron microscopy (SEM/EDS). From the dT/dt vs T plots of the cooling curves of the alloys, the solidification path was determined to be $Liquid{\longrightarrow[80]^{544-558}}{\alpha}-Al{\longrightarrow[80]^{453-459}}Al/Mg_2Si{\longrightarrow[80]^{371-374}}Al/Zn{\longrightarrow[80]^{331-333}}Zn/mgZn_2$. The formation mechanisms of the Mg and Zn containing phases and their morphology was discussed together with the effects of the cooling rate. Key findings include the lengthening of the mushy zone in directionally solidified samples remelted against a positive temperature gradient, as well as an enrichening of the α-Al phase by Zn through remelting. Mg2Si and other Si based phases were observed to adopt a much finer faceted microstructure in favour of a script-like microstructure when exposed to the higher cooling rate of coolant quenching.

Effect of Solution Treatment Conditions on the Microstructure and Hardness Changes of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu Alloys (Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu 합금의 미세조직 및 경도 변화에 미치는 용체화 처리 조건의 영향)

  • Sung-Bean Chung;Min-Su Kim;Dae-Up Kim;Sung-Kil Hong
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.337-346
    • /
    • 2022
  • In order to optimize the solution treatment conditions of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu alloys, a series of heat treatment experiments were conducted under various solution treatment times up to 7 hours at 545℃, followed by a microstructural analysis using optical microscopy, FE-SEM, and Brinell hardness measurements. Rapid coarsening of eutectic Si particles was observed in the alloys during the first 3 hours of solution treatment but the size of those Si particles did not change at longer solution treatment conditions. Meanwhile, the degree of spheroidisation of eutectic Si particles increased until the solution treatment time was increased up to 7 hours. Q-Al5Cu2Mg8Si6 andθ-Al2Cu were observed in as-cast Cu-containing Al alloys but the intermetallic compounds were dissolved completely after 3 hours of solution treatment at 545℃. Depending on the initial Mg composition of the Al alloys, π-Al8FeMg3Si either disappeared in the alloy with 0.3wt% of Mg content after 5 hours of solution treatment or remained in the alloy with 0.5wt% of Mg content after 7 hours of solution treatment time. Mg and Cu content in the primary-α phase of the Al alloys increased until the solution treatment time reached 5 hours, which was in accordance with the dissolution behavior of Mg or Cu-containing intermetallic compounds with respect to the solution treatment time. From the results of microstructural changes in the Al-7Si-Mg-Cu alloys during solution treatment, it was concluded that at least 5 hours of solution treatment at 545℃ is required to maximize the age hardening effect of the present Al alloys. The same optimal solution treatment conditions could also be derived from Brinell hardness values of the present Al-7Si-Mg-Cu alloys measured at different solution treatment conditions.

Beryllium Effects on the Microstructure and Mechanical Properties of A356 Aluminium Casting Alloy

  • Lee, Jeong-Keun;Kim, Myung-Ho;Choi, Sang-Ho
    • Journal of Korea Foundry Society
    • /
    • v.18 no.5
    • /
    • pp.431-438
    • /
    • 1998
  • Microstructure of A356 aluminum alloys cast in the permanent mold was investigated by optical microscope and image analyzer, with particular respect to the shape and size distribution of iron intermetallics known as ${\beta}-phase$ ($Al_5FeSi$). Morphologies of the ${\beta}-phase$ was found to change gradually with the Be:Fe ratio like these. In Be-free alloys, ${\beta}-phase$ with needlelike morphology was well developed, but script phase was appeared when the Be:Fe ratio is above 0.2:1. With the Be:Fe ratios of 0.4:1-1:1, script phase as well as Be-rich phase was also observed. In case of higher Be addition, above 1:1, Be-rich phase was observed on all regions of the specimens, and increasing of the Be:Fe ratios gradually make the Be-rich phase coarse. It was also observed that the ${\beta}-phase$ with needlelike morphology was coarsened with increase of the Fe content in Be-free alloys. However, in Be-added alloys, length and number of these ${\beta}-phases$ were considerably decreased with the increased Be:Fe ratio. Beryllium addition improved tensile properties and impact toughness of the A356 aluminium alloy, due to the formation of a script phase or a Be-rich phase instead of a needlelike ${\beta}-phase$. The DSC tests indicated that the presence of Be could increase the amount of Mg which is available for $Mg_2Si$ precipitate hardening, and enhance the precipitation kinetics by lowering the ternary eutectic temperature.

  • PDF

Phase equilibria between coexisting minerals in the talc ores and process of talc formation in the Daeheung Talc Deposits, Korea (대흥활석광상에 있어서 공존하는 광물의 상평형과 활석화 과정)

  • 이상헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.156-170
    • /
    • 1994
  • The talc ore deposits can be divided into chloritic and dolomitic ores according to mineral assemblages. The former is mainly composed of chlorite and talc accompanied with dolomite, muscovite and opaque mineral, and the latter of dolomite and talc with serpentine, calcite and magnesite in places. Talc was originated from chlorite and serpentine. Carbonate minerals were formed either directly from the introduced hydrothermal solution or secondarily as a by-product of steatitization of chlorite and serpentine. The process of talc formation may be governed by the chemical composition of the host rocks and the amount and/or chemical composition of the hydrothermal solution which may be different in places. However, the representative reactions producing talc from chlorite and serpentine are as follows : (1) chlorite+$Mg^{++}+Si^{4+}+H_2O$=talc, (2) chlorite+$Mg^{++}+Si^{4+}+Ca^{++}+CO_2+O_2+H_2O$=talc+ dolomite+ magnesite, and (3) serpentine +$Mg^{++}+Fe^{++}+Si^{4+}+Ca^{++}+CO_2+H_2O$=talc+dolomite. The reactions indicate that the carbonate minerals can be formed when the hydrothermal solution have high $fO_2$ and $fCO_2$. The steatitization might be proceeded by the hydrothermally metasomatic reaction between chlorite schist or chlorite gneiss intercalated in the granitic gneiss and hydrothermal solution accompanied to the wet granitization.

  • PDF

Age-Hardening Behavior of SiCp Reinforced 6061 Aluminum Alloy Composites (SiCp/6061Al합금복합재료의 시효거동)

  • An, Haeng-Geun;Yu, Jeong-Hui;Kim, Seok-Won;U, Gi-Do
    • Korean Journal of Materials Research
    • /
    • v.10 no.12
    • /
    • pp.793-798
    • /
    • 2000
  • The age-hardening behavior of unreinforced 6061 Al alloy and SiCp/6061 Al alloy composites reinforced with different size of SiC particle (average diameter ; 0.7$\mu\textrm{m}$ and 7.0$\mu\textrm{m}$) was investigated by hardness measurement, calorimetric technique and transmission electron microscopy. At 17$0^{\circ}C$ isothermal aging treatment, the peak aging time of 0.7$\mu\textrm{m}$SiCp/6061Al alloy composite and 7.0$\mu\textrm{m}$SiCp/6061Al alloy composite is shorter than that of unreinforced 6061Al alloy, and the aging of 7.0$\mu\textrm{m}$SiCp/6061Al alloy composite is accelerated more than that of 0.7$\mu\textrm{m}$SiCp/6061Al alloy composite. This acceleration is due to the increase of dislocation density by the compositeness with SiCp and the SiC particle size. In the peak aged condition, the major strengthening phase of these materials is intermediate $\beta$ phase(Mg$_2$Si), and the activation energy for the formation of $\beta$ phase is considerably decreased by the compositeness with SiCp and the increasing of SiC Particle site.

  • PDF