• Title/Summary/Keyword: $MgSo_4$(5%)

Search Result 1,980, Processing Time 0.033 seconds

Kinetics of the Thermal Decomposition of Mg-Al Sulfate Hydrate (Mg-Al 복합 황산염 수화물의 열분해 속도)

  • 박홍채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.5
    • /
    • pp.417-422
    • /
    • 1987
  • Kinetic studies were made on the thermal decomposition of hydrated magnesium aluminum double sulfate by a nonisothermal TG method. Thermal analyses of the dehydration of tricosahydrate showed that the reaction proceeded via decahydrate to the anhydrous MgAl2(SO4)4 in the range 50$^{\circ}$to 400$^{\circ}C$. Decomposition of MgAl2(SO4)4 occurred as the two-step between 650$^{\circ}$ and 970$^{\circ}C$. Dehydration of MgAl2(SO4)4$.$23H2O and a 2D diffusion controlled with an activation energy of 16.6kcal/mole, respectively. MgAl2(SO4)4 fitted the contracting volume model with an activation energy of 10.5kcal/mole, and MgSO4 fitted a contracting area model with an activation of 4.5kcal/mole.

  • PDF

Calcium silicate의 생성반응에 미치는 $\SO_3$의 영향

  • 박병철
    • Cement
    • /
    • s.92
    • /
    • pp.41-54
    • /
    • 1983
  • Calcium Silicate의 생성 및 분해에 미치는 $K_2SO_4$$MgSO_4$의 영향을 비교 검토하였으며 Calcium Silicate의 생성을 최대로 하는 $SO_3$, MgO와 $K_2O$의 최적비를 반응표면분석기법으로 조사하였다. $K_2SO_4$의 혼합비 증감에 따라 $C_3S$의 생성촉진에 미치는 영향은 없었다. $C_3S$의 조합원료에 $CaSO_4$를 4.0wt$\%$이상 첨가시 $CaSO_4$$C_2S$주위에 Sulphate reaction rim을 형성함으로써 $C_2S$와 CaO의 반응을 방해해 $C_3S$의 생성을 억제하였으나 적당량의 MgO가 첨가되면 $CaSO_4$가 4.0wt$/%$이상이라도 $C_3S$의 생성은 억제되지 않았다. $C_3S$의 생성을 최대로 하기 위한 $SO_3$, MgO와 $K_2O$의 최적비를 반응표면분석기법을 이용하여 다음과 같은 결론을 얻었다. 1. $K_2SO_4$$K_2O$에 비해 소결에 미치는 영향이 적으므로 크링카에 고용되고 남은 $K_2O$는 전량 $K_2SO_4$로 전환시켜야한다. 2. $SO_3$$K_2O$의 최적비율은 1.5이다. 3. $CaSO_4$와 MgO의 최적비율을 유지하기 위해서는 $CaSO_4$중의 wt$\%SO_3$=0.7의 수준으로 Sulphate의 함량을 조절하여야 한다. 4. $SO_3$와 결합하고 남은 $K_2O$가 0wt$\%$인 경우는 $K_2SO_4$=2.3wt$\%$, MgO=1.5wt$\%$일때 $C_3S$의 생성이 최대로 된다. 5. $SO_3$와 결합하고 남은 $K_2O$가 2.0wt$\%$인 경우는 $K_2$$SO_4$=4.5wt$\%$, MgO=3.0wt$\%$일때 $C_3S$의 생성이 최대로 된다.

  • PDF

Effect of $SO_3$ on Calciumsilicate Formation(III) (Calciumsilicate의 생성반응에 미치는 $SO_3$ 영향(III))

  • 임은극;박병철
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.3
    • /
    • pp.221-230
    • /
    • 1984
  • In this study an investigation was made to determine optimum ratio between $SO_3$, MgO and $K_2O$ that maximizes $C_2S$ formation in Clinkering reaction Using response surface analysis method. It was proved that 1) Residual $K_2O$ int he clinker should be converted to $K_2SO_4$ because $K_2SO_4$ has less effect on the burnability than $K_2O$, 2) Optimum ratio if $SO_3$/K2O is 1.5, 3) Optimun balance between $CaSO_4$ and MgO is to be adjusted to such a level that w/o SO3=0.7(w/o MgO-2).4) In case of lack of $K_2O$ free CaO was minimized when $K_2SO_4$=2.3w/o and MgO=1.5w/o but if remaining $K_2O$ was 2w/o free CaI was minimized in the level that $K_2SO_4$=2.3w/o and MgO =1.5 w/o but if remaining $K_2O$ was 2 w/o free CaO was minimized in the level that $K_2SO_4$=4.5w/o and MgO =3.0 w/o.

  • PDF

Effect of MgSO4/MgO on the Synthesis of 5Mg(OH)2·MgSO4·3H2O Whiskers using One-step Ambient Pressure (상압 공정을 이용한 침상형 5Mg(OH)2·MgSO4·3H2O 합성에 대한 MgSO4/MgO 효과)

  • Yu, Ri;Pee, Jae-Hwan;Kim, Hyung Tae;Kim, YooJin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.201-205
    • /
    • 2013
  • Magnesium hydroxide sulfate hydrate ($5Mg(OH)_2.MgSO_4{\cdot}3H_2O$, abbreviated 513 MHSH) whiskers were synthesized using MgO and $MgSO_4.7H_2O$ as reactants without addition of basic solution. Previously, MHSH whiskers were prepared by hydrothermal method using $MgSO_4$ in aqueous ammonia. In this work, for the first time, we synthesized a high purity MHSH via ambient pressure. In addition, a high molar ratio of $MgSO_4$ : MgO is an important key to the formation of high purity MHSH. Also, it was possible to prepare whiskers with high aspect ratio using an increasing reaction time in the reaction between the remaining $SO_4^{2-}$ ions and the ${Mg(OH)_6}^{4-}$ fragment, finally producing one-dimensional whiskers.

Effect of MgO and NH4OH on Formation of 5Mg(OH)2·MgSO4·3H2O Whiskers (침상형 5Mg(OH)2·MgSO4·3H2O 형성에 관한 MgO와 NH4OH 영향)

  • Yu, Ri;Pee, Jae-Hwan;Kim, Hyung-Tae;Kim, Kyung-Ja;Kim, Young-Woong;Kim, Woong;Kim, Yoo-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.3
    • /
    • pp.283-289
    • /
    • 2011
  • Magnesium hydroxide sulfate hydrate whiskers ($5Mg(OH)_2{\cdot}MgSO_4{\cdot}3H_2O$, abbreviated 513 MHSH) were prepared using hydrothermal reaction with magnesium oxide (MgO) and magnesium sulfate ($MgSO_4{\cdot}7H_2O$) as the starting materials. The effects of the molar ratio of $MgSO_4$/MgO and amount of $NH_4OH$ were studied. As a result, 513 MHSH whiskers co-existed with hexagonal plate $Mg(OH)_2$ at low concentration of $SO_4^{2-}$. The molar ratio of $MgSO_4{\cdot}7H_2O$/MgO was 7:1, uniform 513 MHSH whiskers were formed without impurity such as $Mg(OH)_2$. Appropriate amount of $NH_4OH$ has affected to formation of high quality MHSH. Their morphologies and structures were determined by powder X-ray diffraction (XRD) scanning electron microscopy (SEM) and thermo-gravimetric analyzer (TGA).

Effects of Magnesium and Sulfate Ions on the Sulfate Attack Resistance of Alkali-activated Materials (알칼리 활성화 결합재 모르타르의 황산염 침식 저항성에 미치는 마그네슘 및 황산 이온의 영향)

  • Park, Kwang-Min;Cho, Young-Keun;Shin, Dong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.415-424
    • /
    • 2017
  • The purpose of this study is to investigate the effect of sulfate (${SO_4}^{2-}$) and magnesium ($Mg^{2+}$) ions on sulfate resistance of Alkali-activated materials using Fly ash and Ground granulated blast furnace slag (GGBFS). In this research, 30%, 50% and 100% of GGBFS was replaced by sodium silicate modules ($Ms(SiO_2/Na_2O)$, molar ratio, 1.0, 1.5 and 2.0). In order to investigate the effects of $Mg^{2+}$ and ${SO_4}^{2-}$, compression strength, weight change, lengh expansion of the samples were measured in 10% sodium sulfate ($Na_2SO_4$), 10%, 5% and 2.5% magnesium sulfate ($MgSO_4$), 10% magnesium nitrate ($Mg(NO_3)_2$), 10% [magnesium chloride ($MgCl_2$) + sodium sulfate ($Na_2SO_4$)] and 10% [magnesium nitrate $(Mg(NO_3)_2$ + sodium sulfate ($Na_2SO_4$)] solution, respectively and X-ray diffraction analysis was conducted after each experiment. As a result, when $Mg^{2+}$ and ${SO_4}^{2-}$ coexist, degradation of compressive strength and expansion of the sample were caused by sulfate erosion. It was found that the reaction of $Mg^{2+}$ with Calcium Silicate Hydrate (C-S-H) occurred and $Ca^{2+}$ was produced. Then the Gypsum ($CaSO_4{\cdot}2H_2O$) was formed due to reaction between $Ca^{2+}$ and ${SO_4}^{2-}$, and also Magnesium hydroxide ($Mg(OH)_2$, Brucite) was produced by the reaction between $Mg^{2+}$ and $OH^-$.

Effect of H2SO4 and Reaction Time on Synthesis of 5Mg(OH)2·MgSO4·3H2O Whiskers using Hydrothermal Reaction (수열반응을 이용한 침상형 5Mg(OH)2·MgSO4·3H2O 합성에 대한 H2SO4와 반응 시간의 영향)

  • Choi, Areum;Oh, Nuri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.401-405
    • /
    • 2020
  • Magnesium hydroxide sulfate hydrate (MHSH) whiskers were synthesized via a hydrothermal reaction by using MgO as the reactant as well as the acid solution. The effects of the H2SO4 amount and reaction time at the same temperature were studied. In general, MHSH whiskers were prepared using MgSO4 in aqueous ammonia. In this work, to reduce the formation of impurities and increase the purity of MHSH, we employed a synthesis technique that did not require the addition of a basic solution. Furthermore, the pH value, which was controlled by the H2SO4 amount, acted as an important factor for the formation of high-purity MHSH. MgO was used as the raw material because it easily reacts in water and forms Mg+ and MgOH+ ions that bind with SO42- ions to produce MHSH. Their morphologies and structures were determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM).

A Study on the Ingredients in the Sap of Acer mono MAX. and Betula costata T. in Mt. Jiri Area -On the Components of Mineral and Sugar- (지리산지역 고로쇠나무 및 거제수(거자수) 나무의 수액성분에 관하여 -Mineral과 Sugar성분에 관하여-)

  • 서화중;김충모;정두례
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.20 no.5
    • /
    • pp.479-482
    • /
    • 1991
  • The medical use of Acer mono MAX. and Betula costata T. sap has had the long history in Korea. So the mineral and sugar contents of these sap gathered in Mt. Jiri area at spring were analyzed to investigate the scientific base of folk remedies by using ion liquid chromatography and high performance liquid chromatography. The values of chlorine and sulfate in Acer mono MAX. were 11.5 mg/l and 176.7 mg/l, and in Betula costata T. 26.5 mg/l and 162.4 mg/l, respectively. The values of potassium, sodium, calcium and magnesium in Acer mono MAX. were 67.9 mg/l, 5.6 mg/l, 73.8 mg/l and 4.5 mg/l, and in Betula costata T. were 152.1 mg/l, 9.7 mg/l, 39.2 mg/l and 5.7 mg/l, respectively. The values of copper, zinc and manganese in Acer mono MAX. were 0.057 mg/l, 0.483 mg/l and 5.071 mg/l, and copper, zinc, mangances and iron in Betula costata T. were 0.038 mg/l, 1.584 mg/l, 4.354 mg/l and 2.511 mg/l, respectively. The values of sucrose in Acer mono MAX. were 27.29 mg/l, glucose and fructose in Betula costata T. were 0.97 g/l and 3.05 g/l, respectively.

  • PDF

Studies on the Asplund Pulping of Wood for Paper Pulp(II) -Effect of some cellulose stabilizers added to the alkaline chip-treatment and the peroxide bleaching on the quality of larchwood asplund pulps- (제지용(製紙用) 아스플룬드펄프 제조(製造)에 관한 연구(II) -일본 잎갈나무��의 알카리 전처리(前處理)와 아스플룬드 펄프의 과산화물(過酸化物) 표백(漂白)에서 셀룰로오스 안정제(安定劑)의 영향(影響)에 관하여-)

  • Lim, Kie-Pyo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.7-15
    • /
    • 1981
  • A Japanese larch has been reforested very much in Korea, but it is not used as a wood resources for paper pulp by now. So this study is carried out to utilize the larchwood for paper pulp manufacture through the Asplund pulping process. The experiment on increasing in the brightness of the pulp is made through the addition of $MgSO_4$, $ZnSO_4$, $Al_2(SO_4)_3$, and KI as a cellulose stabilizer in chip treatment with caustic soda which is followed by high-temperature defibration and conventional peroxide bleaching (5% NaOH plus 2% additive salt per wood in cold pretreatment), or in high-consistency (30%) pulp bleaching of hydrogen peroxide and peracetic acid (100% acitve oxygen per lignin) for conventional one. The results obtained are as follows: 1. The solution of 0.5% additive salts had different pH by the sort of bases that was pH 5.7 in $MgSO_4$, liquor, pH 4.9 for $ZnSO_4$, and pH 2.9 for $Al_2(SO_4)_3$, and in the precepitation of bases which ranged to pH 6-13 for $MgSO_4$, pH 5-12 for $ZnSO_4$, and pH 3-10 for $Al_2(SO_4)_3$. 2. The cellulose stabilizer affective in high-consistency peroxide bleaching was KI, $MgSO_4$, and $ZnSO_4$, but has made a little improvement in de lignification and brightness of pulp in comparison with no addition. 3. The higher alkalinity in the chip treatment has made the higher strength and brightness of larchwood Aspiund pulp instead of downing the pulp yield. And the effective compound for cellulose stabilizer in caustic soda pretreatment of chip was $ZnSO_4$, $Al_2(SO_4)_3$ and KI in order for the conventional peroxide bleaching after Asplund pulping. 4. Therefore, the more effective additives for cellulose stabilization in high-temperature defibration of larchwood suppose to be $ZnSO_4$, $Al_2(SO_4)_3$, and KI, while KI and $MgSO_4$ for peroxide bleaching.

  • PDF

Production of Nucleotide by Immobilized Cell (고정화 미생물에 의한 뉴크레오타이드 생산)

  • CHO Jung-Il;JUNG Sung-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.2
    • /
    • pp.111-116
    • /
    • 1991
  • The effective p.eduction of 5'-GMP(5'-Guanylic acid) by enzymatic conversion of 5'-XMP(5'-Xanthyic acid) was investigated. The Iyophilized Brevibacterium ammoniagenes ATCC 19216 which were used as the XHP aminase source, was immobilized by entrapping in K-carrageenan, agar, polyacrylamide or Ca-alginate. $3\%$ K-carrageenan was selected as the most suitable matrix. In the production of 5'-GMP using the free cells of 3. ammoniagenes ATCC 19216, the optimum conditions were $42^{\circ}C$, PH 7.0, 100mg/ml glucose, 120mg/ml cell ,8mg/ml $MgSO_4\cdot7H_2O$, 5mg/ml POESA, 5mg/ml phytic acid. Under the conditions, $94.5\%$ of 5'-GMP was converted within 8 hours. In the production of 5'-GMP using the immobilized whole cells of B. ammoniagenes ATCC 19216, the optimum conditions were $37^{\circ}C$, pH 7.5, 50mg/ml glucose, 1mg/ml $KH_2PO_4$, 10mg/ml phytic acid, 60mg/ml cell, 8mg/ml $MgSO_4\;\cdot\;7H_2O$, 5mg/ml POESA. Under the conditions, $64.7\%$ of 5'-GMP was converted within 40 hours.

  • PDF