• Title/Summary/Keyword: $MgCl_2\

Search Result 2,274, Processing Time 0.025 seconds

Case Study of Hydrochemical Contamination by Antimony Waste Disposal in Korea (국내 안티몬폐기물에 의한 수질화학적 오염 사례연구)

  • Jeong, Chan-Ho
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.471-482
    • /
    • 2008
  • This study was carried out to investigate the contamination characteristics of surface water, soil water and groundwater around and in antimony waste landfill site in Wonsung-ri, Yeonki-kun, Chungnam. The waste disposed in the study was excavated and transported to the other site in several years ago. For this study, we collected 35 water samples including groundwater, soil water and surface in the study site and also collected 2 groundwater samples from a comparison site. The data of chemical analysis of soil water samples show the antimony concentration of $48.75{\sim}74.81\;ppb$, which is much higher than groundwater in a comparison site and is highly excess than regulation level for a drinking water of some advanced countries. A relatively high antimony concentration was detected in three stream water samples nearby landfill site and two groundwater samples. Fe and Mn contents in soil water and stream water were measured as maxium 6.5 mg/L and 7.3 mg/L, respectively. Although other heavy metals of water samples in the study site are higher concentration than water sample of comparison site, their absolute levels are lower than regulation level for a drinking water. The chemical data of water samples are plotted widely from Ca - $HCO_3$ type to Ca - ($Cl +SO_4+NO_3$) type. Some groundwater show high contents of potassium and nitrate, which would come from fertilizer and sewage. Conclusively, some heavy metals including antimony have been still remained under the soil surface of the landfill site in the past. These metals have leaked out into nearby stream and groundwater system, and threaten the ecology, crops and the health of residents in this site. Therefore, the government have to prepare the strategy to prevent the diffusion of heavy metals into aquatic environment and have to process the reclamation work for contaminated site. It is also necessary to make a regulation level of the antimony concentration for a drinking water and soil environment in Korea.

Composition and pollution characteristics of PM10 and PM2.5 particles at Gosan site of Jeju Island in 2008 (PM10, PM2.5 미세먼지의 조성 및 오염 특성: 2008년 제주도 고산지역 측정 결과)

  • Lee, Soon-Bong;Jung, Duk-Sang;Cho, Eun-Kyung;Kim, Hyeon-A;Hwang, Eun-Yeong;Kang, Chang-Hee
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.310-318
    • /
    • 2011
  • The collection of atmospheric $PM_{10}$ and $PM_{2.5}$ particle samples was made at Gosan site of Jeju Island, which is one of the most representative background sites in Korea. Their chemical compositions have been analyzed to explore the pollution characteristics and emission sources. The mass concentrations of $PM_{10}$ and $PM_{2.5}$ particles were $37.6{\pm}20.1$ and $22.9{\pm}14.3{\mu}g/m^3$, respectively, with the content of $PM_{2.5}$ to $PM_{10}$ as 61%. The $PM_{2.5}/PM_{10}$ ratios of nss-$SO_4^{2-}$, $NO_3^-$, and $NH_4^+$ were 0.94, 0.56, 1.02, respectively, indicating that these components were distributed mostly in the fine fractions. Based on the factor analysis, it was found that the compositions of fine particles were mainly influenced by anthropogenic sources, followed by soil or marine sources. The results of the backward trajectory analysis indicate that the concentrations of nss-$SO_4^{2-}$, $NO_3^-$, $NH_4^+$, nss-$Ca^{2+}$, and Pb were high when the air parcels moved from the China continent, while relatively low with the air parcels coming from North Pacific Ocean and/or East Sea.

Sources Apportionment Estimation of Ambient PM2.5 and Identification of Combustion Sources by Using Concentration Ratios of PAHs (대기 중 PM2.5의 오염기여도 추정 및 PAHs 농도비를 이용한 연소 오염원 확인)

  • Kim, Do-Kyun;Lee, Tae-Jung;Kim, Seong-Cheon;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.538-555
    • /
    • 2012
  • The purpose of this study was to understand $PM_{2.5}$ chemical characteristics on the Suwon/Yongin area and further to quantitatively estimate $PM_{2.5}$ source contributions. The $PM_{2.5}$ sampling was carried out by a high-volume air sampler at the Kyung Hee University-Global Campus from November, 2010 to October, 2011. The 40 chemical species were then analyzed by using ICP-AES(Ag, Ba, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V and Zn), IC ($Na^+$, $K^+$, $NH_4{^+}$, $Mg^{2+}$, $Ca^{2+}$, $NO_3{^-}$, ${SO_4}^{2-}$ and $Cl^-$), DRI/OGC (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) and GC-FID (acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[a] pyrene, indeno[1,2,3-cd] pyrene, benzo[g,h,i]perylene and dibenzo[a,h,]anthracene). When applying PMF model after performing proper data treatment, a total of 10 sources was identified and their contributions were quantitatively estimated. The average contribution to $PM_{2.5}$ emitted from each source was determined as follows; 26.3% from secondary aerosol source, 15.5% from soil and road dust emission, 15.3% from vehicle emission, 15.3% from illegal biomass burning, 12.2% from incineration, 7.2% from oil combustion source, 4.9% from industrial related source, and finally 3.2% from coal combustion source. In this study we used the ratios of PAHs concentration as markers to double check whether the sources were reasonably classified or not. Finally we provided basic information on the major $PM_{2.5}$ sources in order to improve the air quality in the study area.

Comparison of the Number Concentration and the Chemical Composition of the Atmospheric PM2.5 in Jeju Area

  • Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.743-753
    • /
    • 2014
  • The number concentrations and the water soluble ionic concentrations of $PM_{2.5}$ have measured at Gosan site in Jeju, Korea, from March 2010 to December 2010, to clarify their characteristics. $PM_{2.5}$ number concentrations vary from 22.57 to $975.65particles/cm^3$ with an average value of $240.41particles/cm^3$, which have been recorded evidently high in spring season as compared with those in other season. And the concentrations in small size ranges are greatly higher than those in large size ranges, so the number concentration in the size range $0.25{\sim}0.45{\mu}m$ has more than 94% of the total number concentration of $PM_{2.5}$. The major ionic components in $PM_{2.5}$ are $SO{_4}^{2-}$, $NH_4{^+}$ and $NO_3{^-}$, which are mainly originated from anthropogenic sources, on the other hand, the concentrations of $Cl^-$, $K^+$, $Ca^{2+}$ and $Mg^{2+}$ are recorded relatively lower levels. The concentrations of the major ionic components are very high in spring season, but the concentration levels of the other components are recorded significantly high in winter season. On the other hand, in summer season, the lowest concentration levels are observed for overall components as well as the sum of them. The concentration ratios of nss-$SO{_4}^{2-}/SO{_4}^{2-}$ and nss-$Ca^{2+}/Ca^{2+}$ are 98.1% and 88.9%. And the concentration ratio of $SO{_4}^{2-}/NO_3{^-}$(3.64) is greatly higher than the value in urban area due to no large $NO_x$ emission sources in the measurement. In addition, the correlation and the factor analysis for the number and the ionic concentrations of $PM_{2.5}$ are performed to identify their sources. From the Pearson correlation analysis and the factor analysis, it can be suggested that the smaller parts(< $0.5{\mu}m$) of $PM_{2.5}$ is contributed by anthropogenic sources, but the sources of the remaining larger parts of $PM_{2.5}$ are not able to be specified sources in this study.

Enhanced photocatalytic oxidation of humic acids using Fe3+-Zn2+ co-doped TiO2: The effects of ions in aqueous solutions

  • Yuan, Rongfang;Liu, Dan;Wang, Shaona;Zhou, Beihai;Ma, Fangshu
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.181-188
    • /
    • 2018
  • Photocatalytic oxidation in the presence of Fe-doped, Zn-doped or Fe-Zn co-doped $TiO_2$ was used to effectively decompose humic acids (HAs) in water. The highest HAs removal efficiency (65.7%) was achieved in the presence of $500^{\circ}C$ calcined 0.0010% Fe-Zn co-doped $TiO_2$ with the Fe:Zn ratio of 3:2. The initial solution pH value, inorganic cations and anions also affected the catalyst photocatalytic ability. The HAs removal for the initial pH of 2 was the highest, and for the pH of 6 was the lowest. The photocatalytic oxidation of HAs was enhanced with the increase of the $Ca^{2+}$ or $Mg^{2+}$ concentration, and reduced when concentrations of some anions increased. The inhibition order of the anions on $TiO_2$ photocatalytic activities was $CO{_3}^{2-}$ > $HCO_3{^-}$ > $Cl^-$, but a slightly promotion was achieved when $SO{_4}^{2-}$ was added. Total organic carbon (TOC) removal was used to evaluate the actual HAs mineralization degree caused by the $500^{\circ}C$ calcined 0.0010% Fe-Zn (3:2) co-doped $TiO_2$. For tap water added with HAs, the $UV_{254}$ and TOC removal rates were 57.2% and 49.9%, respectively. The $UV_{254}$ removal efficiency was higher than that of TOC because of the generation of intermediates that could significantly reduce the $UV_{254}$, but not the TOC.

Estimate of Regional and Broad-based Sources for PM2.5 Collected in an Industrial Area of Japan

  • Nakatsubo, Ryouhei;Tsunetomo, Daisuke;Horie, Yosuke;Hiraki, Takatoshi;Saitoh, Katsumi;Yoda, Yoshiko;Shima, Masayuki
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.126-139
    • /
    • 2014
  • In order to estimate the influence of sources on $PM_{2.5}$ in the industrial area of Japan, we carried out a source analysis using chemical component data of $PM_{2.5}$. $PM_{2.5}$ samples were collected intermittently at an industrial area in Japan from July 2010 to November 2012. Water soluble ions ($Cl^-$, $NO_3{^-}$, $SO{_4}^{2-}$, $Na^+$,$NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$), elements (Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Sb, Pb), and carbonaceous species (OC, EC) of the $PM_{2.5}$ (a total of 198 samples) were analyzed. Positive Matrix Factorization (PMF) model was applied to the data of those chemical components to identify the source of $PM_{2.5}$. At this observation site, nine factors were extracted. The major contributors of $PM_{2.5}$ were secondary sulfate 1, in which loading factors of $SO{_4}^{2-}$ and $NH_4{^+}$ were large (percentage source contribution: 20.9%), traffic, in which loading factors of OC (organic carbon) and EC (elemental carbon) were large (20.8%), secondary sulfate 2, in which loading factors of K and $SO{_4}^{2-}$ were large (8.0%), steel mills (7.8%), secondary chloride and nitrate (7.0%), soil (5.0%), heavy oil combustion (3.8%), sea salt (3.8%), and coal combustion (2.3%). The conditional probability function (CPF) and the potential source contribution function (PSCF) were carried out to examine the influence of a regional source and a broad-based source, respectively. CPF results supported local source influences such as steel mills, sea salt, traffic, coal combustion, and heavy oil combustion. PSCF results suggested that ships in the East China Sea, an industrial area of the east coastal region of China, and an active volcano in the Kyushu region of Japan were potential regional sources of secondary sulfate 1. Secondary sulfate 2 was affected by the burning of biomass fields and by coal combustion in Chinese urban areas such as Beijing, Hebei, and western Inner Mongolia. Source characterization using continuous data from one site showed a potential source representing fossil fuel combustion is affected both by regional and broad-based sources.

Physical and Mechanical Properties of Magnesium Oxide Matrix depending on Addition Ratio of Magnesium Chloride (염화마그네슘 첨가율에 따른 산화마그네슘 경화체의 물리 및 역학적 특성)

  • Kim, Heon-Tae;Jung, Byeong-Yeol;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.308-313
    • /
    • 2014
  • Recently, for longevity of resident building, the main trend is that the change of the inside space organization of resident building from wall construction to rhamen construction, which resulted in increase in use of lightweight composite panel. Thus, in this study, authors analyzed the engineering property of oxide of magnesium depending on the magnesium chloride addition ratio. The results of this research is expected to contribute on providing a fundamental material for the surface materials of lightweight composite panel. As the result of the experiment, as fluidity increased, air content decreased and initial set and final set as the magnesium chloride addition ratio increase. In the aspect of flexural strength and compressive strength, the test specimen showed the highest strength at 40% of the magnesium chloride addition ratio. At 20% of the magnesium chloride addition ratio, the test specimen showed the lowest water absorption rate. As the magnesium chloride addition ratio increases, the expansibility tends to increase as well in the aspect of shrinkage strain. After observing microstructure, we can see hydration products in the form of needle. It appeared high flexural strength because the hydration products have mineral fibrous tissue shape, which also contribute to the cause of the expansibility.

Cytotoxicity, Toxicity, and Anticancer Activity of Zingiber Officinale Roscoe Against Cholangiocarcinoma

  • Plengsuriyakarn, Tullayakorn;Viyanant, Vithoon;Eursitthichai, Veerachai;Tesana, Smarn;Chaijaroenkul, Wanna;Itharat, Arunporn;Na-Bangchang, Kesara
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4597-4606
    • /
    • 2012
  • Cholangiocarcinoma (CCA) is an uncommon adenocarcinoma which arises from the epithelial cells of the bile ducts. The aim of the study was to investigate the cytotoxicity, toxicity, and anticancer activity of a crude ethanolic extract of ginger (Zingiber officinale Roscoe) against CCA. Cytotoxic activity against a CCA cell line (CL-6) was assessed by calcein-AM and Hoechst 33342 assays and anti-oxidant activity was evaluated using the DPPH assay. Investigation of apoptotic activity was performed by DNA fragmentation assay and induction of genes that may be involved in the resistance of CCA to anticancer drugs (MDR1, MRP1, MRP2, and MRP3) was examined by real-time PCR. To investigate anti-CCA activity in vivo, a total of 80 OV and nitrosamine (OV/DMN)-induced CCA hamsters were fed with the ginger extract at doses of 1000, 3000, and 5000 mg/kg body weight daily or every alternate day for 30 days. Control groups consisting of 10 hamsters for each group were fed with 5-fluorouracil (positive control) or distilled water (untreated control). Median $IC_{50}$ (concentration that inhibits cell growth by 50%) values for cytotoxicity and anti-oxidant activities of the crude ethanolic extract of ginger were 10.95, 53.15, and $27.86{\mu}g/ml$, respectively. More than ten DNA fragments were visualized and up to 7-9 fold up-regulation of MDR1 and MRP3 genes was observed following exposure to the ethanolic extract of ginger. Acute and subacute toxicity tests indicated absence of any significant toxicity at the maximum dose of 5,000 mg/kg body weight given by intragastric gavage. The survival time and survival rate of the CCA-bearing hamsters were significantly prolonged compared to the control group (median of 54 vs 17 weeks). Results from these in vitro and in vivo studies thus indicate promising anticancer activity of the crude ethanolic extract of ginger against CCA with the absence of any significant toxicity. Moreover, MDR1 and MRP3 may be involved in conferring resistance of CCA to the ginger extract.

Factor Analyses for Water Quality Indicators of Streams, Ground Water, and Reservoir in Agricultural Small Catchments of the Han River Basin

  • Park, C-S;Joo, J-H;Jung, Y-S;Yang, J-E
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.382-393
    • /
    • 2000
  • The principal indicators contributing to water qualities was screened by factor analyses, based on the monitored chemical parameters of water quality for various water resources from 1995 to 1999 in the small agricultural catchments of the Han River Basin. Water samples of streams, groundwaters, and reservoirs were taken four times a year from upper (Daegwanryong), middle (Dunnae and Chunchon) and lower (Guri) reaches of Han River Basin. In these areas, the respective type of farming practiced was alpine agriculture and livestocks raising, typical upland and paddy cultivation, and intensive cropping in the plastic film house. Water quality was monitored for twenty-one water quality parameters, including pH, EC, SS, T-N, T-P, COD, cations, anions, and heavy metals. pH, EC and COD of the stream waters were suitable for the Korea irrigation water quality guidelines. However, T-N and T-P concentrations of water samples in four catchments far exceeded the irrigation water guideline. Concentrations of canons and heavy metals in Wangsuk stream in Guri area were higher than those in streams in other areas. Factor analysis revealed that significant correlation was observed for 81 pairs out of 231 water quality indicators of stream water among the $21\;{\times}\;21$ cross correlation matrix of stream water quality indicators. The first factor accounted for 27.01% of the total variation in stream water quality indicators, and high positive factor loadings were shown on EC, K, Na, $NH_4\;^+-N$, $PO_4\;^{3-}$, $SO_4\;^{2-}$, and COD. Fifty-three water quality indicator pairs were significant out of 190 ground water quality parameters. The first factor accounted for 28.54% of the total variation in ground water quality indicators, and high loadings were revealed on EC, Ca, Mg, K, Na, $NH_4\;^+-N$, and $SO_4$. Twenty-nine pairs of reservoir water quality indicators were significant out of 66 pairs. The first factor accounted for 37.06% of the total variation in reservoir water quality indicators, and high loadings were shown on EC, Mg, K, Na, SS, T-P, Cl, and COD. These results demonstrate that EC was the first factor contributing to water quality.

  • PDF

Use of platelet-rich plasma and modified nanofat grafting in infected ulcers: Technical refinements to improve regenerative and antimicrobial potential

  • Segreto, Francesco;Marangi, Giovanni Francesco;Nobile, Carolina;Alessandri-Bonetti, Mario;Gregorj, Chiara;Cerbone, Vincenzo;Gratteri, Marco;Caldaria, Erika;Tirindelli, Maria Cristina;Persichetti, Paolo
    • Archives of Plastic Surgery
    • /
    • v.47 no.3
    • /
    • pp.217-222
    • /
    • 2020
  • Background Surgical reconstruction of chronic wounds is often infeasible due to infection, comorbidities, or poor viability of local tissues. The aim of this study was to describe the authors' technique for improving the regenerative and antimicrobial potential of a combination of modified nanofat and platelet-rich plasma (PRP) in nonhealing infected wounds. Methods Fourteen patients met the inclusion criteria. Fat tissue was harvested from the lower abdomen following infiltration of a solution of 1,000 mL of NaCl solution, 225 mg of ropivacaine, and 1 mg of epinephrine. Aspiration was performed using a 3-mm cannula with 1-mm holes. The obtained solution was decanted and mechanically emulsified, but was not filtered. Non-activated leukocyte-rich PRP (naLR-PRP) was added to the solution before injection. Patients underwent three sessions of injection of 8-mL naLR-PRP performed at 2-week intervals. Results Thirteen of 14 patients completed the follow-up. Complete healing was achieved in seven patients (53.8%). Four patients (30.8%) showed improvement, with a mean ulcer width reduction of 57.5%±13.8%. Clinical improvements in perilesional skin quality were reported in all patients, with reduced erythema, increased thickness, and increased pliability. An overall wound depth reduction of 76.6%±40.8% was found. Pain was fully alleviated in all patients who underwent re-epithelization. A mean pain reduction of 42%±33.3% (as indicated by visual analog scale score) was found in non-re-epithelized patients at a 3-month follow-up. Conclusions The discussed technique facilitated improvement of both the regenerative and the antimicrobial potential of fat grafting. It proved effective in surgically-untreatable infected chronic wounds unresponsive to conventional therapies.