• Title/Summary/Keyword: $MgB_2$ thin and thick films

Search Result 2, Processing Time 0.018 seconds

A review on the understanding and fabrication advancement of MgB2 thin and thick films by HPCVD

  • Ranot, Mahipal;Duong, P.V.;Bhardwaj, A.;Kang, W.N.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.1-17
    • /
    • 2015
  • $MgB_2$ thin films with superior superconducting properties are very promising for superconducting magnets, electronic devices and coated conductor electric power applications. A clear understanding of flux pinning mechanism in $MgB_2$ films could be a big aid in improving the performance of $MgB_2$ by the enhancement of $J_c$. The fabrication advancement and the understanding of flux pinning mechanism of $MgB_2$ thin and thick films fabricated by using hybrid physical-chemical vapor deposition (HPCVD) are reviewed. The distinct kind of $MgB_2$ films, such as single-crystal like $MgB_2$ thin films, $MgB_2$ epitaxial columnar thick films, and a-axis-oriented $MgB_2$ films are included for flux pinning mechanism investigation. Various attempts made by researchers to improve further the flux pinning property and $J_c$ performance by means of doping in $MgB_2$ thin films by using HPCVD are also summarized.

Dielectric properties of bismuth magnesium niobate thin films deposited by sputtering using two main phase target in the system (두 메인 상의 타겟을 사용하여 스퍼터링으로 증착한 bismuth magnesium niobate 박막의 유전특성)

  • Ahn, Jun-Ku;Kim, Hae-Won;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.264-264
    • /
    • 2007
  • $B_2Mg_{2/3}/Nb_{4/3}O_7\;(B_2MN)$ thin films and $Bi_{3/2}MgNb_{3/2}O_7\;(B_{1.5}MN)$ thin films were deposited as a function of various deposition temperatures on Pt/$TiO_2/SiO_2$/Si substrates by radio frequency magnetron sputtering system. Both of their thin films are shown to crystalline phase at $500^{\circ}C$, deposition temperature, using 100W RF power. The composition of them and structural micro properties are investigated by RBS spectrum and SEM, AFM. 200 nm-thick $B_2MN$ thin films were deposited at room temperature had capacitance density of $151nF/cm^2$ at 100kHz, dissipation factor of 0.003 and had capacitance density of $584nF/cm^2$ at 100kHz, dissipation factor of 0.0045 at $500^{\circ}C$ deposition temperature. Both of their dielectric constant deposited at room temperature and at $500^{\circ}C$ were each approximately 40 and 100.

  • PDF