• Title/Summary/Keyword: $MgB_2$ 초전도

Search Result 257, Processing Time 0.022 seconds

Comparison of in-situ $MgB_2$ Superconducting Properties Under Different Annealing Environment (열처리조건 변화에 따른 in-situ $MgB_2$ 초전도 특성 비교)

  • Chung, K.C.;Sinha, B. B.;Chang, S.H.;Kim, J.H.;Dou, S. X.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.116-121
    • /
    • 2012
  • Effect of mixed gas and additional Mg powder in an annealing process of the $MgB_2$ is investigated. Four different type of samples were prepared, each in different annealing environment of Ar, $Ar+4%H_2$, Ar with Mg powder and $Ar+4%H_2$ with Mg powder. Different annealing environment did not affect the electron-phonon interaction which is reflected from the same superconducting transition of 36.6 K for all samples. The reducing effect of hydrogen is clearly depicted from the presence of excess Mg in sample synthesized in $Ar+4%H_2$ gas implying the reduced rate of reaction between Mg and B. This has manifested itself in terms of slightly increased high-field critical current density of the sample. In contrast, the sample synthesized in $Ar+4%H_2$ with Mg powder, has shown overall enhancement in the superconducting properties as presented by higher diamagnetic saturation and critical current density.

Fabrication of $MgB_2$ Sheet by Powder Rolling Method (분말압연 공정에 의한 $MgB_2$ 판재 제조)

  • Chung, K.C.;Jeong, T.J.;Kim, T.H.;Ahn, S.T.;Park, Y.S.;Kim, D.H.;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.88-92
    • /
    • 2011
  • [ $MgB_2$ ]superconducting sheets have been fabricated using powder roll compaction method. Sheet-type $MgB_2$ bulk samples were successfully fabricated using the pre-reacted $MgB_2$ powders. In this work, $MgB_2$ powders were compacted by two rotating rolls and squeezed out as a form of $MgB_2$ sheets of ~1 mm thickness. The rolling speed of 0.3-0.7 rpm and the gap distance of 0.3-0.8 mm between the two rollers were carefully controlled to get a full compaction of the powders into bulk $MgB_2$ sheets. The densities of $MgB_2$ sheets were 1.98-2.05 g/$cm^3$, which is 75.44-77.99 % of the theoretical value of 2.63 g/$cm^3$. And the density comparison was made compared to those of typical $MgB_2$ bulks from uni-axial pressing and $MgB_2$ wires from Powder-In-Tube processing.

Effect of Ball-Milling on the Superconducting Properties of C and C-Based Compound Doped $MgB_2$ (탄소 및 탄소화합물이 도핑된 $MgB_2$ 초전도체의 볼밀링 효과)

  • Ahn, Jung-Ho;Jang, Min-Kyu;Oh, Sang-Jun
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • We have examined the effect of ball-milling on the superconducting properties of $MgB_2$ doped with C. The ball-milling of pre-reacted $MgB_2$ powder was carried out in dry or wet state using C or diethylenetriamine ($C_{4}H_{13}N_3$) as additives. The diethylenetriamine, whose chemical formula contains no oxygen, was chosen to avoid an excess oxidation during doping. The superconducting transition temperature (Tc) of the ball-milled or doped $MgB_2$ powders was only slightly smaller than that of undoped $MgB_2$. The critical current density (Jc) of the highly ball-milled $MgB_2$ was higher than that of C-doped $MgB_2$. The addition of diethylenetriamine was detrimental to Jc, although Tc was almost unchanged.

  • PDF

Enhanced superconducting properties of MgB2 by doping the carbon quantum dots

  • K.C., Chung;S.H., Jang;Y.S., Oh;S.H., Kang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.55-58
    • /
    • 2022
  • Carbon-based doping to MgB2 superconductor is the simplest approach to enhance the critical current densities under magnetic fields. Carbon quantum dots is synthesized in this work as a carbon provider to MgB2 superconductors. Polyvinyl Pyrrolidone is pyrolyzed and dispersed in dimethylfomamide solvent as a dopant to the mixture of Mg and B powders. Doped MgB2 bulk samples clearly show the decrease of a-axis lattice constant, grain refinements, and broadening of FWHM of diffraction peaks compared to un-doped MgB2 possibly due to the carbon substitution and/or boron vacancy at the boron site in MgB2 lattice. Also, high-field Jc for the doped MgB2 is enhanced significantly with the crossover about 3 T at 5 & 20 K when increasing the doping of carbon quantum dots.