• Title/Summary/Keyword: $M_{3}C$ carbides

Search Result 84, Processing Time 0.022 seconds

The Distribution Behavior of Alloying Elements in Matrices and Carbides of Chromium White Cast Iron (크롬백주철의 기지조직 및 탄화물에 있어서 합금원소의 거동)

  • Ryu, Seong-Gon
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.489-492
    • /
    • 2000
  • Three different white cast irons alloyed with Cr and Si were prepared in order to study their distribution be-havior in matrices and carbides. The specimens were produced using a 15kg-capacity high frequency induction fur-nace. Melts were super-heated to $1600^{\circ}C$, and poured at $1550^{\circ}C$ into a pepset mold. Three combinations of the alloys were selected so as to observe the distribution behavior of Cr and Si : 0.5%C-25.0%Cr-1.0%Si(alloy No. 1), 0.5%C-5.0%Cr-1.0%Si(alloy No. 2) and 2.0%C-5.0%Cr-1.0%Si(alloy No. 3). Cellular $M_7C_3$ carbides-$\delta$ferrite eutectic were developed at $\delta$ferrite liquid interfaces in the alloy No. 1 while only traces of $M_7C_3$ carbides-$\delta$ferrite eutectic were precipitated in the alloy No. 2. With the addition of 2.0% C and 5.0% Cr, ledeburitic $M_3C$ carbides instead of cellular $M_7C_3$ carbides were precipitated in the alloy No. 3. Cr was distributed preferentially to the $M_7C_3$ carbides rather than to the matrix structure while more Si was partitioned in the matrix structure rather than the $M_7C_3$ carbides. $K^m$ for Cr was ranged from 0.56 to 0.68 while that for Si was from 1.12 to 1.28. $K^m$ for Cr had a lower value with increased carbon contents. The mass percent of Cr was higher in the $M_7C_3$ carbides with increased Cr contents.

  • PDF

Depletion of Solid Solution Elements and Change of Carbides in Artificially Aging Heat Treated 2.25CrMo Steel (인공 경년열화 열처리된 2.25CrMo 강에서의 고용원소 고갈 및 탄화물 변화)

  • Byeon, Jal Won;Pyo, S.W.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.2
    • /
    • pp.70-75
    • /
    • 2002
  • The depletion of solid solution elements from matrix and the change of carbides during artificial aging of 2.25CrMo steel at $630^{\circ}C$ were investigated. The Mo and Cr elements were found to be depleted drastically in the early stage of aging. The change of carbides was confirmed by analyzing the XRD patterns of electrolytically extracted carbides. Four type of carbides, $M_{23}C_6$, $M_3C$, $M_2C$ and $M_6C$, were found to exist in the specimen before aging. The amount of $M_6C$ carbides increased with aging time, while that of $M_3C$ carbides diminished after short aging time.

Effect of HAZ Softening Zone on Creep Rupture Properties of 1.0Cr-1.0Mo-0.25V Turbine Steels -Part II : Carbide Morphology- (1.0Cr-1.0Mo-0.25V 터어빈 로터강의 열영향부 연화층이 크립 파단 특성에 미치는 영향 - Part II : 탄화물 형태 -)

  • ;Indacochea, J. E.
    • Journal of Welding and Joining
    • /
    • v.15 no.1
    • /
    • pp.101-108
    • /
    • 1997
  • In repaired weldment of ASTM A-470 class 8 high pressure stream turbine rotor steel, creep rupture life was studied in relation with carbide morphology. Carbides were identified using carbide extraction replica method. A retired rotor has molybdenum rich carbide $M_2C$, lndacochea vanadium rich carbide $M_4C_3$, and chromium rich carbides $M_{23}C_6$and $M_7C_3$. Weldments ruptured at ICHAZ showed that some of carbides have been transformed into spherical types of coarsened carbides at ruptured area. Those carbides were revealed as molybdenum rich $M_6C$ carbide and they provided cavitation sites due to molybdenum depletion around $(M_6C)$ carbide. However coarsened $M_6C$ and $M_{23}C_6$ carbides were observed at ruptured area in case of ruptured at CGHAZ.

  • PDF

The effect of aging on the Microstructure and Hardness of Stellite 12 alloy overlayer by PTA process (PTA법에 의한 스텔라이트 12합금 육성층의 미세조직 및 경도에 미치는 시효처리의 영향)

  • 정병호;김무길;이성열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.68-75
    • /
    • 2002
  • Stellite 12 alloy-powders were overlaid on 410 stainless steel valve seat by plasma transferred arc(PTA)process. Variation of microstructure and hardness of overlaid deposit with aging time at $750^{\circ}C$ was investigated. The deposit showed hypoeutectic microstructure, which was consisting of primary cobalt dendrite and networked $M_{7}C_{3}$type eutectic carbides. After aging new M_{23}C_{6}$ carbide was formed by the partial decomposition of $M_7C_3$ type eutectic carbides and finely dispersed $M_{23}C_6$ type carbides were also precipitated in the matrix. Hardness of the deposit was increased with increase of aging time at $750^{\circ}C$ and showed maximum value at 35hours. After showing maximum value, it was fallen down again at 70hours because of overaging. The increase of hardness in aging is ascribed to the formation of new stable $M_{23}C_6$ type carbide by the partial decomposition of $M_7C_3$ type eutectic carbides and also precipitation of finely dispersed $M_{23}C_6$ carbides in matrix.

Effects of Mo on the Microstructure and Hardness in High Chromium Cast Irons (Mo가 고크롬주철의 조직 및 경도에 미치는 영향)

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.16 no.2
    • /
    • pp.141-148
    • /
    • 1996
  • In high chromium cast iron, the control of matrix microstructure as well as carbide structure is important to the performance as a wear resistant material. In this study, 3.0% C-24.0% Cr white cast irons with various molybdenum contents(residual, 1.0%, 3.0% and 5.0%) were solidified conventionally and unidirectionally for studying their effects on the microstructure and hardness. In the conventional casting, two sets of castings were poured from each melt. One set of the castings consisted of cylindrical bars of 10 and 20mm by 155mm long. The second set of the castings was a cylindrical bar of 30mm by 200mm long. On the other hand, a pep-set mold set on the Cu plate was employed to make the solidification unidirectionally. X-ray diffraction method was used to observe retained austenite and carbides in the high chromium cast iron. The morphology of eutectic $M_7C_3$ carbides changed from needle-like type to nodular type with the increase of Mo content. And, the presence of $M_2C$ carbides was identified in the sample where Mo was added over 3.0 %. Primary and eutectic carbides appeared as rod type and corngrain type, respectively in the unidirectionally solidified samples which were cut to parallel to the solidification direction. In the EDX analysis, Cr concentration was higher in the primary and eutectic $M_7C_3$ carbides, Mo in the $M_2C$ carbides, and Fe in the matrix.

  • PDF

Effect of Metallic Binder Composition on Microstructure and Hardness of (W,Ti)C Cemented Carbides ((W,Ti)C계 초경합급의 미세조직 및 경도에 미치는 금속 결합재 조성의 영향)

  • Daoush, Walid M.;Lee, Kyong-H.;Park, Hee-S.;Jang, Jong-J.;Hong, Soon-H.
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.208-214
    • /
    • 2007
  • The microstructure and hardness of (W,Ti)C cemented carbides with a different metallic binder composition of Ni and Co fabricated by powder technology were investigated. The densifications of the prepared materials were accomplished by using vacuum sintering at $1450^{\circ}C$. Nearly full dense (W,Ti)C cemented carbides were obtained with a relative density of up to 99.7% with 30 wt.% Co and 99.9% with 30 wt.% Ni as a metallic binder. The average grain size of the (W,Ti)C-Co and the (W,Ti)C-Ni was decreased by increasing the metallic binder content. The hardness of the dense (W,Ti)C-15 wt%Co and (W,Ti)C-15 wt%Ni, was greater than that of the other related cemented carbides; in addition, the cobalt-based cemented carbides had greater hardness values than the nickel-based cemented carbides.

Effects of Carbide and Matrix Structures on Abrasion Wear Resistance of Multi-Component White Cast Iron (다합금계 백주철의 탄화물 및 기지조직이 내마모성에 미치는 영향)

  • Ryu, Seong-Geun
    • Korean Journal of Materials Research
    • /
    • v.7 no.4
    • /
    • pp.310-316
    • /
    • 1997
  • The effects of carbide and matrix structures on the abrasion wear resistance of multi-component white cast irons with 3.0 mass%C have been studied in this paper. Four different heats were poured in order to obtain the specimens with different combinations of the carbide structures: a basic iron(3.0 mass%C-5.0 mass%Cr-5.0 mass%V-5.0 mass% Mo-12.5mass%W)for M$_{6}$C and M$_{7}$C$_{3}$ carbides, and a Cr free iron(3.0 mass%C-5.0 mass%V-2.5mass%Mo-12.5 mass%W) for MC and M6C carbides. A conventional high Cr free free iron(3.0 mass%C-5.0 mass%V-2.5 mass%Mo-12.5 mass%W) for MC and M6C carbides. A conventional high Cr white cast iron was also poured to compare its wear resistance with those of the multi-component white cast irons. In the as-cast condition, the range of abrasive wear rate(Rw=mg/min) was from 4.15 to 5.98 . The lowest Rw, which means the highest wear resistance, was obtained in the basic iron with nodular MC, lamellar M$_{2}$C and cellular M$_{7}$C$_{3}$ carbides. On the other hand, the Rw of the high Cr white cast iron ranked between the basic iron and the Mo and W free iron. In each alloy, the Rw of air hardened or tempered specimen was lower than that of the as-cast one because of the change of matrix structures by the heat treatments. The Rw of the hear treated speci-mens increased in the order Mo and W free iron, basic iron, Cr free iron, high Cr iron, and V free iron.n.n.n.

  • PDF

Carbide Behavior in STD11 Tool Steel during Heat Treatment (STD11 공구강의 열처리 온도에 따른 탄화물 거동)

  • Hong, Ki-Jung;Song, Jin-Hwa;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.262-270
    • /
    • 2011
  • Carbide precipitation and dissolution behavior at various temperatures during heat treatment has been studied in STD11 cold working die steel through confocal scanning laser microscopy; dilatometry; and X-ray diffraction analysis. The equilibrium phase diagram and phase fractions with temperature were calculated using a FactSage program. Confocal laser microscopic observation revealed that ${\alpha}$ to ${\gamma}$ transformation temperature is near $800^{\circ}C$; M7C3 carbides melt at $1245^{\circ}C$; and the melting temperature of STD11 is near $1370^{\circ}C$. XRD results indicated that the M23C6 carbides dissolve in the matrix if austenitized at over $1030^{\circ}C$; while the M7C3 carbides remain up to $1200^{\circ}C$ although their amount decreases. The calculated equilibrium phase diagram showed good agreement with experimental results on carbide dissolution and phase transformation temperatures.

Effect of Sintering Atmosphere and Carbon Addition on Sintered Density of M3/2 Grade High Speed Steel Powder (M3/2계 고속도 공구강 분말의 소결분위기와 탄소첨가가 소결밀도에 미치는 영향)

  • Ahn, Jin-Hwan;Heo, Jong-Seo;Joo, Dong-Won;Jung, Eun;Sung, Jang-Hyun
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.265-272
    • /
    • 1998
  • For the purpose of investigating the effect of sintering atmosphere and carbon addition on sintered density and microstructural characteristics, the M3/2 grade high speed steel powders with the addition of carbon are sintered in vacuum and $20%H_2/79%N_2/l%CH_4$ gas atmosphere. With the addition of 0 wt%C, 0.45wt%C and 1.15 wt%C the optimum sintering temperatures decrease down to $1260^{\circ}C$, $1210^{\circ}C$ and $1150^{\circ}C$ respectively for the vacuum sintered specimen, and also decrease down to $1130^{\circ}C$, $1120^{\circ}C$ and $1115^{\circ}C$ for the gas sintered specimen. The threshold temperatures for full densification decrease steeply with increasing carbon content of the sintered specimen, while this temperatures are slowly decreased at high carbon content. The vacuum sintered specimen shows the primary carbides of MC and $M_6C$ type at the optimum sintering temperature, and eutectic carbides of $M_2C$ and Fe-Cr type are produced in the oversintered specimen. The gas sintered specimen exhibits M6C and Fe-Cr type primary carbides at the optimum sintering temperature. The eutectic carbides of $M_6C$ and Fe-Cr type and MX type carbonitride are shown for the oversintered specimen in the gas atmosphere. The hardness of gas sintered specimen shows high value of 830-860 Hv due to the increment of carbide precipitation.

  • PDF

The Solidification Microstructure of X%C-5%Cr-5%V-5%Mo-5%W-5%Co Multi-Component White Cast Iron (X%C-5%Cr-5%V -5%Mo-5%W-5%Co 다합금계백주철의 응고조직에 관한 연구)

  • Yu, Sung-Kon;Yasuhiro Matsubara
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.472-476
    • /
    • 2001
  • Type and three-dimensional morphology of carbides precipitated in the X(X= 1.70, 1.92, 2.21, 2.50, 2.86)%C-5%Cr-5%V-5%Mo-5%W-5%Co multi-component white cast iron were investigated using an optical microscope and SEM. The types of carbides precipitated were MC, M$_2$C and M$_{7}$C$_{3}$. Morphology of the MC carbide took three forms, that it petal-like, nodular and coral-like. MC carbide seemed to change its morphology from petal-like through nodular, and finally to coral-like with an increase in carbon content. M7C carbide was classified into lamellar and plate-like type. The lamellar M$_2$C arbide precipitated in the iron with low molybdenum and tungsten contents, and higher contents of both elements in the iron were needed to form the plate-like M$_2$C carbide. The morphology of M$_{7}$C$_{3}$ was rod-like similar to that observed in high chromium white cast iron. However, cobalt does not affect the type and morphology of precipitated carbides.des.

  • PDF