• Title/Summary/Keyword: $MIC_{50}$

Search Result 374, Processing Time 0.029 seconds

Inhibitory Action of YJA20379, a New Proton Pump Inhibitor on Helicobacter Pylori Growth and Urease

  • Woo, Tae-Wook;Chang, Man-Sik;Chung, Young-Kuk;Kim, Kyu-Bong;Sohn, Sang-Kwon;Kim, Sung-Gyu;Choi, Wahn-Soo
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 1998
  • The activities of two types of antiulcer agents against 9 strains of Helicobacter pylori (H. pylori) were determined by the agar dilution method. The antiulcer agents were YJA20379, a newly synthesized proton pump inhibitor developed by Yung-jin Pharmaceutical company, and omeprazole. Both compounds were found to have significant activities against this organism. The MIC values of YJA20379 and omeprazole were 11.7 and $31.25{\mu.g/ml}$ respectively. In addition, the inhibitory potency of both compounds was investigated on H. pylori urease which is believed to be an important colonization and virulence factor in the pathogenesis of gastritis and peptic ulcers. These compounds dose-dependently inhibited urease extracted with distilled water and their $IC_50$ values were $16.4{\times}10^{-5} M and 14.3{\times}10^{-5}M,$ respectively. In addition, a pH-dependent study to determine whether inhibitory potency would be activated by acid condition was performed. It was found that unlike omeprazole, YJA20379 was not affected by acid condition. To determine the inhibition pattern and optimal concentration of substrate, kinetics were evaluated at various pH levels (pH 5.0, 7.0, and 8.5). The data show that YJA20379 noncompetitively inhibited H. pylori urease and $K_M/K_i$values were 0.96 $mM/60{\mu}M (pH 5.0), 0.56 mM/141.5 {\mu}M (pH 7.0)$, and $1.94mM/34{\mu}M (pH 8.5)$, respectively. Based on data obtained, it is concluded that YJA20379 is a significant inhibitor of H. pylori growth and urease and therefore, taking these results into consideration, YJA20379 might be a beneficial therapy for gastritis and peptic ulcers induced by H. pylori.

  • PDF

Pharmacological Studies of Cefoperazone(T-1551) (Cefoperazone(T-1551)의 약리학적 연구)

  • Lim J.K.;Hong S.A.;Park C.W.;Kim M.S.;Suh Y.H.;Shin S.G.;Kim Y.S.;Kim H.W.;Lee J.S.;Chang K.C.;Lee S.K.;Chang K.C.;Kim I.S.
    • The Korean Journal of Pharmacology
    • /
    • v.16 no.2 s.27
    • /
    • pp.55-70
    • /
    • 1980
  • The pharmacological and microbiological studies of Cefoperazone (T-1551, Toyama Chemical Co., Japan) were conducted in vitro and in vivo. The studies included stability and physicochemical characteristics, antimicrobial activity, animal and human pharmacokinetics, animal pharmacodynamics and safety evaluation of Cefoperazone sodium for injection. 1) Stability and physicochemical characteristics. Sodium salt of cefoperazone for injection had a general appearance of white crystalline powder which contained 0.5% water, and of which melting point was $187.2^{\circ}C$. The pH's of 10% and 25% aqueous solutions were 5.03 ana 5.16 at $25^{\circ}C$. The preparations of cefoperazone did not contain any pyrogenic substances and did not liberate histamine in cats. The drug was highly compatible with common infusion solutions including 5% Dextrose solution and no significant potency decrease was observed in 5 hours after mixing. Powdered cefoperazone sodium contained in hermetically sealed and ligt-shielded container was highly stable at $4^circ}C{\sim}37^{\circ}C$ for 12 weeks. When stored at $4^{\circ}C$ the potency was retained almost completely for up to one year. 2) Antimicrobial activity against clinical isolates. Among the 230 clinical isolates included, Salmonella typhi was the most susceptible to cefoperazone, with 100% inhibition at MIC of ${\leq}0.5{\mu}g/ml$. Cefoperazone was also highly active against Streptococcus pyogenes(group A), Kletsiella pneumoniae, Staphylococcus aureus and Shigella flexneri, with 100% inhibition at $16{\mu}g/ml$ or less. More than 80% of Escherichia coli, Enterobacter aerogenes and Salmonella paratyphi was inhibited at ${\leq}16{\mu}/ml$, while Enterobacter cloaceae, Serratia marcescens and Pseudomonas aerogenosa were somewhat less sensitive to cefoperagone, with inhibitions of 60%, 55% and 35% respectively at the same MIC. 3) Animal pharmacokinetics Serum concentration, organ distritution and excretion of cefoperazone in rats were observed after single intramuscular injections at doses of 20 mg/kg and 50 mg/kg. The extent of protein binding to human plasma protein was also measured in vitro br equilibrium dialysis method. The mean Peak serum concentrations of $7.4{\mu}g/ml$ and $16.4{\mu}/ml$ were obtained at 30 min. after administration of cefoperazone at doses of 20 mg/kg and 50 mg/kg respectively. The tissue concentrations of cefoperazone measured at 30 and 60 min. were highest in kidney. And the concentrations of the drug in kidney, liver and small intestine were much higher than in blood. Urinary and fecal excretion over 24 hours after injetcion ranged form 12.5% to 15.0% in urine and from 19.6% to 25.0% in feces, indicating that the gastrointestinal system is more important than renal system for the excretion of cefoperazone. The extent of binding to human plasma protein measured by equilibrium dialysis was $76.3%{\sim}76.9%$, which was somewhat lower than the others utilizing centrifugal ultrafiltration method. 4) Animal pharmacodynamics Central nervous system : Effects of cefoperazone on the spontaneous movement and general behavioral patterns of rats, the pentobarbital sleeping time in mice and the body temperature in rabbits were observed. Single intraperitoneal injections at doses of $500{\sim}2,000mg/kg$ in rats did not affect the spontaneous movement ana the general behavioral patterns of the animal. Doses of $125{\sim}500mg/kg$ of cefoperazone injected intraperitonealy in mice neither increased nor decreased the pentobarbital-induced sleeping time. In rabbits the normal body temperature was maintained following the single intravenous injections of $125{\sim}2,000mg/kg$ dose. Respiratory and circulatory system: Respiration rate, blood pressure, heart rate and ECG of anesthetized rabbits were monitored for 3 hours following single intravenous injections of cefoperazone at doses of $125{\sim}2,000mg/kg$. The respiration rate decreased by $3{\sim}l7%$ at all the doses of cefoperazone administered. Blood pressure did not show any changes but slight decrease from 130/113 to 125/107 by the highest dose(2,000 mg/kg) injected in this experiment. The dosages of 1,000 and 2,000 mg/kg seemed to slightly decrease the heart rate, but it was not significantly different from the normal control. All the doses of cefoperazone injected were not associated with any abnormal changes in ECG findings throughout the monitering period. Autonomic nervous system and smooth muscle: Effects of cefoperazone on the automatic movement of rabbit isolated small intestine, large intestine, stomach and uterus were observed in vitro. The autonomic movement and tonus of intestinal smooth muscle increased at dose of $40{\mu}g/ml$ in small intestine and at 0.4 mg/ml in large intestine. However, in stomach and uterine smooth muscle the autonomic movement was slightly increased by the much higher doses of 5-10 mg/ml. Blood: In vitro osmotic fragility of rabbit RBC suspension was not affected by cefoperazone of $1{\sim}10mg/ml$. Doses of 7.5 and 10 mg/ml were associated with 11.8% and 15.3% prolongation of whole blood coagulation time. Liver and kidney function: When measured at 3 hours after single intravenous injections of cefoperaonze in rabbits, the values of serum GOT, GPT, Bilirubin, TTT, BUN and creatine were not significantly different from the normal control. 5) Safety evaluation Acute toxicity: The acute toxicity of cefoperazone was studied following intraperitoneal and intravenous injections to mice(A strain, 4 week old) and rats(Sprague-Dawler, 6 week old). The LD_(50)'s of intraperitonealy injected cefoperazone were 9.7g/kg in male mice, 9.6g/kg in female mice and over 15g/kg in both male and female rats. And when administered intravenously in rats, LD_(50)'s were 5.1g/kg in male and 5.0g/kg in female. Administrations of the high doses of the drug were associated with slight inhibition of spontaneous movement and convulsion. Atdominal transudate and intestinal hyperemia were observed in animals administered intraperitonealy. In rats receiving high doses of the drug intravenously rhinorrhea and pulmonary congestion and edema were also observed. Renal proximal tubular epithelial degeneration was found in animals dosing in high concentrations of cefoperazone. Subacute toxicity: Rats(Sprague-Dawley, 6 week old) dosing 0.5, 1.0 and 2.0 g/kg/day of cefoperazone intraperitonealy were observed for one month and sacrificed at 24 hours after the last dose. In animals with a high dose, slight inhibition of spontaneous movement was observed during the experimental period. Soft stool or diarrhea appeared at first or second week of the administration in rats receiving 2.0g/kg. Daily food consumption and weekly weight gain were similar to control during the administration. Urinalysis, blood chemistry and hematology after one month administration were not different from control either. Cecal enlargement, which is an expected effect of broad spectrum antibiotic altering the normal intestinal microbial flora, was observed. Intestinal or peritoneal congestion and peritonitis were found. These findings seemed to be attributed to the local irritation following prolonged intraperitoneal injections of hypertonic and acidic cefoperazone solution. Among the histopathologic findings renal proximal tubular epithelial degeneration was characteristic in rats receiving 1 and 2g/kg/day, which were 10 and 20 times higher than the maximal clinical dose (100 mg/kg) of the drug. 6) Human pharmacokinetics Serum concentrations and urinary excretion were determined following a single intravenous injection of 1g cefoperazone in eight healthy, male volunteers. Mean serum concentrations of 89.3, 61.3, 26.6, 12.3, 2.3, and $1.8{\mu}g/ml$ occured at 1,2,4,6,8 and 12 hours after injection respectively, and the biological half-life was 108 minutes. Urinary excretion over 24 hours after injection was up to 43.5% of administered dose.

  • PDF

Antioxidant activity and sensory characteristics of rice cookies containing dandelion complex powder (민들레복합분말 첨가 쌀 쿠키의 항산화적, 관능적 품질특성)

  • Byeon, Yang Soo;Ra, Ha Na;Kim, Hae Young
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.173-180
    • /
    • 2017
  • This study evaluated the characteristics of rice cookies with varying amounts (0, 250, 500, and 750 mg) of dandelion complex powder. Dandelion powder is considered a functional food with skin-moisturizing and atopic skin improvement effects by KFDA. Quality characteristics of AF343 and rice cookies were measured by determining antimicrobial activities, physical characteristics, sensory evaluation values, and antioxidant activities. An antibiotic susceptibility test of the powder showed positive activities in Escherichia coli (O157:H7), Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes. Rice cookie containing 250-500 mg powder showed significantly increased antioxidant activities compared to controls (p<0.05). However, sensory intensities between the two sample groups were not significantly different. Thus, rice cookies containing 250-500 mg dandelion complex powder were successfully developed to improve antioxidant and antimicrobial qualities. These products may attract the attention of health-conscious consumers in the highly competitive cookie industry.

In vitro and In vivo Antimicrobial Activities of Medicinal Plants against Crown Gall in Grapevine (포도나무 줄기혹병균에 대한 약용식물의 항균활성 및 병발생억제)

  • Kim, Eun Su;Yun, Hae Keun
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.537-548
    • /
    • 2016
  • The objective of this study was to evaluate the antimicrobial activities of 9 kinds of medicinal plants against crown gall in grapevine. The medicinal plants extracted with several solvent systems were screened for in vitro antibacterial activity by the disc diffusion method. The ethanol and ethyl acetate extracts from magic lily flowers, tachys roots, asian plantain flowers and seeds, sweet wormwood leaves, stems and flowers, immature bitter melon fruits, cockscomb flowers, and peach tree resin showed in vitro antimicrobial activities against Rhizobium vitis with growth inhibition zones ranging from 10 to 27 mm in diameter. The minimum inhibitory concentration values of extracts against R.vitis ranged from 10,000 in Asian plantain flower and 50,000 fold diluted extracts in sweet wormwood flowers, stems, leaves, cockscomb leaves and immature bitter melon fruits. The active fractions of ethyl acetate and ethanol extracts from the medicinal plants were partially separated through silica gel column chromatography and thin layer chromatography (TLC). The active fractions were separated at Rf 0.36, 0.69, 0.75, 0.84, and 0.94 in sweet wormwood extracts, Rf 0.96 and 0.99 in cockscomb flower extracts, Rf 0.92 and 0.97 in cockscomb leaf extracts, and Rf 0.85 in immature bitter melon fruit extracts in TLC analysis developed with hexane:ethyl acetate (20:80, v/v) and methanol:chloroform (20:80, v/v). Among extracts from plants with in vitro antimicrobial activities, sweet wormwood, cockscomb leaves, and immature bitter melon fruits showed in vivo antimicrobial activities with inhibition activity of 100, 67, and 83.3%, respectively, in 'Kyoho' grapevine inoculated with R. vitis compared with the untreated control. These findings indicate that extracts of medicinal plants could be used as sustainable candidates to control crown gall disease caused by R. vitis in grapevines.

Study on the Effect of Blending Ratios on the Antibacterial Activities of Chitosan/Gelatin Blend Solutions (혼합비율에 따른 키토산/젤라틴 혼합용액의 항균활성에 관한 연구)

  • Kim, Byung-Ho;Park, Jang-Woo;Hong, Ji-Hyang
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.405-411
    • /
    • 2005
  • Chitosan, second largest biomass after cellulose on earth, has potential for use as functional food package due to its antibacterial activity. However, due to high melting temperature of chitosan, chitosan films have been made by casting method. Because gelatin has relatively low molting temperature depending upon amount of plasticizer added, it was added to chitosan to produce commercially feasible film. The objective of the current study was to determine optimum blend ratio and amount of chitosan/gelatin blend solutions against antibacterial activities for extruder resin. Gram-positive bacteria (Bacillus cereus ATCC 14579 and Listeria monocytogenes ATCC 15313) and -negative bacteria (Escherichia coli ATCC 25922 and Salmonella enteritidis IFO 3313) were used. Paper (8 mm) diffusion and optical density methods were used to evaluate effect of different blending ratio solutions on the inhibition of bacterial growth. Measured clear none size ranged from 8 mm to 18.07 mm in paper diffusion test. For B. cereus, E. coli, and S. enteritidis, addition of $50\;{\mu}L$ blend solution (chitosan/gelatin = 2/8: 0.3 mg) resulted in clear zone on paper disc. In L. monocytogenes, inhibition effect was observed with 0.6 mg chitosan (chitosan/gelatin=4/6). Minimum inhibitory concentration (MIC) values of B. cerues, L. monocytogenes, E. coli, and S. enteritidis with addition of chitosan were 0.1461, 0.2419, 0.0980, and 0.0490 mg/mL, respectively, These results indicate possibility of producing commercially feasible film with addition of optimum chitosan/gelatin amount.

Antioxidant and Immunological Activities of Polysaccharide Extracted from Cultured Mycelia of Schizophyllum commune (치마버섯 균사체 배양물로부터 분리한 다당류의 항산화 및 면역 활성)

  • Lee, June-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.9
    • /
    • pp.1334-1341
    • /
    • 2014
  • To examine the biological activity of polysaccharide extracted from cultured mycelia of Schizophyllum commune, we determined anti-complementary activity and nitric oxide production as a measure of immunological activity, anti-lipidperoxidation and hydroxy radical scavenging activity as a measure of antioxidative activity, tyrosinase inhibitory activity, anti-microbial activity, and transdermal flux of polysaccharide extracted from cultured mycelia of S. commune. Polysaccharide extracted from S. commune activated the complementary system and produced nitric oxide in RAW 264.7 macrophages. Antioxidant activities as malondialdehyde values were $49.5{\pm}0.7$, $39.7{\pm}1.7$, $39.2{\pm}1.2$, and $2.6{\pm}0.5nM/mL$ for control, extracellular polysaccharide extracted from S. commune (SC-EP), ultrafiltrated polysaccharide extracted from S. commune (SC-UP), and butylated hydroxytoluene, respectively. Hydroxy radical scavenging activity ($IC_{50}$) of SC-UP and mannitol were 3.32 and 1.66 mg/mL, respectively. Tyrosinase inhibitory activities of SC-UP, arbutin, and kojic acid were 19.9%, 31.8%, and 99.0%, respectively. Anti-microbial activities of SC-UP appeared to be low, and transdermal fluxes of SC-UP were 0.47%, 0.73%, and 1.20% after 3, 6, and 9 hr, respectively. These findings suggest that polysaccharide extracted from S. commune has potential immunological and antioxidant activities.

Antioxidative and Antimicrobial Activities of Euphorbia jolkini Extracts (암대극(Euphorbia jolkini Boiss) 추출물의 항산화 및 항균활성)

  • Kim, Ji-Young;Lee, Jung-A;Yoon, Weon-Jong;Oh, Dae-Ju;Jung, Yong-Hwan;Lee, Wook-Jae;Park, Soo-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.699-706
    • /
    • 2006
  • The antioxidative and antimicrobial activities of Euphorbia jolkini extracts were investigated. Total polyphenohc compounds extracted were approximately as follows: 162.08 mg/g from ethanol, 12.64 mg/g from n-hexane, 48.11 mg/g from dichloromethane, 544.08 mg/g from ethyl acetate, 176.42 mg/g from butanol, and 30.00 mg/g from water. The ethylacetate fraction of this extraction showed the highest antioxidative activity $(IC_{50})$: DPPH radical scavenging capacity was measured at $8.38\;{\mu}g/mL$, xanthine oxidase inhibitory activity was $466.01\;{\mu}g/mL$, superoxide radical scavenging capacity was $11.39\;{\mu}g/mL$, and nitric oxide scavenging capacity was $332.11\;{\mu}g/mL$. Antimicrobial activities were determined by paper disc method and minimum inhibitory concentration of E. jolkini extracts against food-borne pathogens and spoilage bacteria. The growth inhibition curves of E. jolkini extracts against Bacillus cereus, Listeria monocytogenes, and Escherichia coli were also determined. These results suggest that the ethylacetate fraction of E. jolkini has strong antimicrobial activity against the all species of microorganisms as well as strong antioxidant activity.

The Effect of Epigallocatechin-3-gallate on HIF-1 α and VEGF in Human Lung Cancer Cell Line (비소세포폐암주에서 저산소상태에 의해 유발된 HIFa-1 α와 VEGF의 발현증가에 미치는 Epigallocatechin-3-gallate의 억제 효과)

  • Song, Joo Han;Jeon, Eun Joo;Kwak, Hee Won;Lee, Hye Min;Cho, Sung Gun;Kang, Hyung Koo;Park, Sung Woon;Lee, Jae Hee;Lee, Byung Ook;Jung, Jae Woo;Choi, Jae Cheol;Shin, Jong Wook;Kim, Ki Jeong;Kim, Jae-Yeol;Park, In Won;Choi, Byoung Whui
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.3
    • /
    • pp.178-185
    • /
    • 2009
  • Background: Epigallocatechin-3-gallate (EGCG) is the major catechin in green tea, and has shown antiproliferative, antiangiogenic, antimetastatic and cell cycle pertubation activity in various tumor models. Hypoxia can be induced because angiogenesis is insufficient for highly proliferating cancer. Hypoxia-inducible factor-1$\alpha$ (HIF-1$\alpha$) and its downstream target, vascular endothelial growth factor (VEGF), are important for angiogenesis, tumor growth and metastasis. The aim of this study was to determine how hypoxia could cause changes in the cellular phenomena and microenvironment in a non-small cell culture system and to examine the effects of EGCG on a HIF-1$\alpha$ and VEGF in A549 cell line. Methods: A549 cells, a non-small cell lung cancer cell line, were cultured with DMEM and 10% fetal bovine serum. A decrease in oxygen tension was induced using a hypoxia microchamber and a $CO_2-N_2$ gas mixture. Gas analysis and a MTT assay were performed. The A549 cells were treated with EGCG (0, 12.5, 25, 50 ${\mu}mol/L$), and then examined by real-time-PCR analysis of HIF-1$\alpha$, VEGF, and $\beta$-actin mRNA. Results: Hypoxia reduced the proliferation of A549 cells from normoxic conditions. EGCG inhibited HIF-1$\alpha$ transcription in A549 cells in a dose-dependent manner. Compared to HIF-1$\alpha$, VEGF was not inhibited by EGCG. Conclusion: HIF-1$\alpha$ can be inhibited by EGCG. This suggests that targeting HIF-1$\alpha$ with a EGCG treatment may have therapeutic potential in non-small cell lung cancers.

Comparative Study on the Antimicrobial Activity of Glycyrrhiza uralensis and Glycyrrhiza glabra Extracts with Various Countries of Origin as Natural Antiseptics (원산지별 감초 추출물의 항균 활성 비교 및 천연방부제로써의 효능 연구)

  • Kim, Hye Jin;Bae, Jeong Yun;Jang, Ha Na;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.358-366
    • /
    • 2013
  • The aim of this study was to evaluate the antimicrobial activities of Glycyrrhiza uralensis and Glycyrrhiza glabra extracts with various countries of origin. Three samples of licorice with various origins (Korea, China, and Uzbekistan) were evaluated for their antimicrobial activities against six skin microflora. The bioassay applied for determining the antimicrobial effects included the disc diffusion assay, minimum inhibitory concentration, and challenge test. The ethyl acetate fractions of G. uralensis and G. glabra extracts showed significant antimicrobial activities against two gram-positive (Bacillus subtilis, Propionibacterium acnes) and two gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria. These samples had much more intensive antimicrobial activities than synthetic preservatives on B. subtilis, P. acnes, and P. aeruginosa, especially. Korean licorice showed the highest antimicrobial activity amongst the samples tested. In view of the observed inhibitory features of these G. uralensis and G. glabra extracts, it is suggested that they could be used as natural antiseptics against bacterial contamination in cosmetics and foods, instead of the common synthetic preservatives currently employed.

Antimicrobial Activities of Sword Bean (Canavalia gladiata) Extracts against Food Poisoning Bacteria (식중독원인균에 대한 작두콩 추출물의 항균활성)

  • Chung, Jaekeun;Lee, Jeongchi;Ha, Dongrong
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.376-382
    • /
    • 2014
  • Various solvents (chloroform, hexane, ethyl acetate, ethanol, methanol, and hot water) were tested to investigate the antimicrobial activities of sword bean (Canavalia gladiata) against 12 food poisoning bacteria. Chloroform, hexane, ethyl acetate and hot water extracts had no antimicrobial activities, but ethanol extract showed V. parahemolyticus 10 mm, S. sonnei 9 mm, and methanol extract showed strong activities in order of V. parahemolyticus 22 mm, S. sonnei 21 mm, L. monocytogenes 20 mm by disk diffusion. The minimal inhibitory concentrations (MICs) were also determined. The methanol extract had MIC values of 50 mg/mL against S. Typhimurium, V. parahemolyticus, and S. sonnei and values of 100 mg/mL against other 7 food poisoning bacteria and values of 200 mg/mL against Y. enterocolitica and MRSA. The inhibitory effect of methanol sword bean extract on the growth of V. parahemolyticus was investigated. Growth of the strain occurred at the concentration of 0.5% extract and was inhibited continuously at 1.0 and 1.5% for 30hours after inoculation, whereas the strain was completely inhibited at 2.0% after 9hours of inoculation.