• Title/Summary/Keyword: $Li_{4/3}Ti_{5/3}O_4$

Search Result 124, Processing Time 0.026 seconds

The Electrochemical Properties of Li4/3Ti5/3O4 Synthesized by Sol-Gel Process (졸-겔법에 의해 합성된 Li4/3Ti5/3O4의 전기화학적 특성)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.73-79
    • /
    • 1999
  • The superstructured $Li_{4/3}Ti_{5/3}O_4$ was prepared by sol-gel process using a mixed solution of lithium acetate (LA) and titanium n-butoxide (TNB). The gel phase was obtained by adding ammonia water ($NH_4OH/TNB$ mole ratio of 0.35) and water ($H_2O/TNH$ mole ratio of 3.5) into the clear sol that was prepared after mixing TNB/LA mole ratio of 5/4 with AA/TNB mole raio of 0.125. It was found that the most suitable $Li_{4/3}Ti_{5/3}O_4$ was obtained by heat treatment of xerogel at $600^{\circ}C$ for 30 hrs. The synthesized $Li_{4/3}Ti_{5/3}O_4$ showed an initial discharge capacity of 174 mAh/g and the capacity loss of about 27.3% during 25 cycles in Li/1M $LiClO_4(in\;PC)/Li_{4/3}Ti_{5/3}O_4$ at current density of $0.15mA/cm^2$ and the voltage range of 0.5~3.0 V.

  • PDF

The Electric Properties of Surface Coating with CePO4 and M3(PO4)2 (M=Mg, Zn) on Li4Ti5O12 for Energy Storage Capacitor

  • Lee, Jong-Kyu;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.413-417
    • /
    • 2018
  • The $Li_4Ti_5O_{12}$ of anode material for the hybrid capacitor was coated using $CePO_4$, $M_3(PO_4)_2$ (M=Mg, Zn). The capacitance of phosphate coated $Li_4Ti_5O_{12}$ was found to be lower than that of $Li_4Ti_5O_{12}$, whereas the equivalent series resistance was higher than that of $Li_4Ti_5O_{12}$. With an increase in cycle number, the base of cylindrical cell exhibited swelling due to gas generated from the reaction between $Li_4Ti_5O_{12}$ and electrolyte. The swelling cycle number of phosphate coated $Li_4Ti_5O_{12}$ was higher than that of $Li_4Ti_5O_{12}$ due to improvement in electrochemical stability. Based on the results, it is proposed that phosphate coating can be employed as a barrier layer to control the gassing reaction by isolating the $Li_4Ti_5O_{12}$ particle from electrolyte solution.

Effect of Interaction between Lithium Ions on Lithium Transport : Analysis of Potentiostatic Current Transient Measured on $Li_{1+\delta}[Ti_{5/3}/Li_{1/3}]O_4$ Film Electrode ($Li_{1+\delta}[Ti_{5/3}/Li_{1/3}]O_4$ 박막 전극내의 리튬 이동에 미치는 리튬 이온들간의 상호작용의 영향 : $Li_{1+\delta}[Ti_{5/3}/Li_{1/3}]O_4$ 박막 전극의 정전압 전류추이곡선의 해석)

  • 정규남;변수일;김성우
    • 한국전기화학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41-41
    • /
    • 2001
  • PDF

Microwave Dielectric Properties of $0.7Ca(Li_{1/4}Nb_{3/4})O_3-0.3CaTiO_3$ Ceramics Added with zinc-borosilicate Glass Frit (Zinc-borosilicate Glass Frit 첨가에 따른 $0.7Ca(Li_{1/4}Nb_{3/4})O_3-0.3CaTiO_3$ 세라믹스의 마이크로파 유전 특성)

  • Yoon, Sang-Ok;Kim, Kwan-Soo;Jo, Tae-Hyun;Oh, Chang-Yong;Kim, Chan-Hang;Shim, Sang-Heung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.371-374
    • /
    • 2004
  • 저온동시 소성용(low temperature co-fired ceramics, LTCC) 마이크로파 유전체을 만들기 위해 $Ca(Li_{1/4}Nb_{3/4})O_3$ 마이크로파 유전체 세라믹스에 zinc-borosililcate glass를 첨가하여 소결 특성과 마이크로파 유전 특성을 조사하였다. $Ca(Li_{1/4}Nb_{3/4})O_3$$0.7Ca(Li_{1/4}Nb_{3/4})O_3-0.3CaTiO_3$에 zinc-borosilicate를 $5{\sim}30wt%$ 첨가하여 소결한 결과 $875{\sim}925^{\circ}C$에서 동시 소성이 가능한 것으로 확인되었으며 zinc-borosilicate glass의 함량이 증가할수록 저온에서 소성이 가능하였지만 과량의 액상과 2차상이 형성되면서 유전율과 품질계수가 저하되는 경향을 나타내었다. $Ca(Li_{1/4}Nb_{3/4})O_3$에 5wt%의 zinc-borosilicate를 첨가하여 $900^{\circ}C$에서 소성한 결과 가장 우수한 유전 특성$(\epsilon_r=17.45,\;Q{\times}f_0=5487)$을 나타내었고, 유전율을 높이기 위해 $CaTiO_3$를 0.3mol% 첨가한 $0.7Ca(Li_{1/4}Nb_{3/4})O_3-0.3CaTiO_3$에 10wt%의 zinc-borosilicate를 첨가하여 $925^{\circ}C$에서 소성한 결과 가장 우수한 유전특성$(\epsilon_r=44.92,\;Q{\times}f_0=5567)$을 나타내었다.

  • PDF

Polarization Behavior of Li4Ti5O12 Negative Electrode for Lithiumion Batteries

  • Ryu, Ji-Heon
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.136-142
    • /
    • 2011
  • $Li_4Ti_5O_{12}$ is prepared through a solid-state reaction between $Li_2CO_3$ and anatase $TiO_2$ for applications in lithium-ion batteries. The rate capability is measured and the electrode polarization is analyzed through the galvanostatic intermittent titration technique (GITT). The rate characteristics and electrode polarization are highly sensitive to the amount of carbon loading. Polarization of the $Li_4Ti_5O_{12}$ electrode continuously increases as the reaction proceeds in both the charge and discharge processes. This relation indicates that both electron conduction and lithium diffusion are significant factors in the polarization of the electrode. The transition metal (Cu, Ni, Fe) ion added during the synthesis of $Li_4Ti_5O_{12}$ for improving the electrical conductivity also greatly enhances the rate capability.

Effect of $Al^{3+}$ Dopant on the Electrochemical Characteristics Of Spinel-type $Li_{4}Ti_{5}O_{12}$ (스피넬형 $Li_{4}Ti_{5}O_{12}$ 음극물질의 $Al^{3+}$ 첨가에 의한 전기화학적 성능 변화)

  • Jeong, Choong-Hoon;Lee, Eui-Kyung;Bang, Jong-Min;Lee, Bong-Hee;Cho, Byung-Won;Na, Byung-Ki
    • Clean Technology
    • /
    • v.14 no.3
    • /
    • pp.171-175
    • /
    • 2008
  • The effect of the addition of $Al^{3+}$ dopant on the electrochemical characteristics of $Li_{4}Ti_{5}O_{12}$ was investigated. $Li_{4}Ti_{5}O_{12}$ is known as a 2ero-strain material, and $Li_{3.95}Al_{0.15}Ti_{4.9}O_{12}$ has been manufactured by solid-state reaction with high energy ball milling (HEBM). The samples were heated at 800, 900 and $1000^{\circ}C$ in electric furnace. The structural and surface structures were measured by XRD (X-ray diffraction) and SEM (scanning electron microscopy). Cut-off voltage of charge/discharge cycles was $1.0{\sim}3.0 V$ to investigate reversible capacity, cycle stability and plateau voltage. The reversible capacity of $Li_{3.95}Al_{0.15}Ti_{4.9}O_{12}$ was 138 mAh/g.

  • PDF

Electrochemistry Characteristics of $Li_4Ti_5O_{12}$ Anode Electrode for Li-ion Battery (리튬전지용 $Li_4Ti_5O_{12}$ 음극전극의 전기화학적 특성)

  • Oh, Mi-Hyun;Kim, Han-Joo;Kim, Young-Jae;Son, Won-Keun;Lim, Kee-Joe;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.340-341
    • /
    • 2005
  • Lithium titanium oxide as anode material for energy storage prepared by novel synthesis method. $Li_4Ti_5O_{12}$ based spinel-framework structures are of great interest material for lithium-ion batteries. We describe here $Li_4Ti_5O_{12}$ a zero-strain insertion material was prepared by novel sol-gel method and by high energy ball milling (HEBM) of precursor to from nanocrystalline phases. According to the X-ray diffraction and scanning electron microscopy analysis, uniformly distributed $Li_4Ti_5O_{12}$ particles with grain sizes of 100nm were synthesized. Lithium cells, consisting of $Li_4Ti_5O_{12}$ anode and lithium cathode showed the 173 mAh/g in the range of 1.0 $\sim$ 3.0 V. Furthermore, the crystalline structure of $Li_4Ti_5O_{12}$ didn't transfer during the lithium intercalation and deintercalation process.

  • PDF

Effect of Li Addition on the Microwave Dielectric Properties of $MgTiO_{3}-CaTiO_{3}$ Ceramic Dielectrics (Li을 첨가한 $MgTiO_{3}-CaTiO_{3}$계 세라믹 유전체의 마이크로파 유전특성)

  • 한진우;김동영;전동석;이상석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.196-199
    • /
    • 2000
  • 마이크로파용 세라믹 유전체로 사용되는 MgTiO$_3$-CaTiO$_3$계 유전체에 Li을 첨가하여 이때 얻어지는 마이크로파 유전특성과 소결특성에 대하여 알아보았다. 94MgTiO$_3$-6CaTiO$_3$으로 주조성을 고정시키고 여기에 Li$_2$CO$_3$를 Li원자 기준으로 0 ~ 10 mol% 범위 안에서 첨가하여 1200~140$0^{\circ}C$의 온도에서 4시간 소결하였다. Li의 첨가량이 적을 때에는 유전체의 품질계수와 유전상수가 모두 감소하였으나 약 lmol% 이상 되면 다시 증가하였으며, 이후 첨가량이 과도해지면 다시 서서히 감소하는 경향을 볼 수 있었다. 1.0 ~ 3.0 mol%의 첨가량 범위 안에서 Li은 MgTiO$_3$-CaTiO$_3$계 유전체의 품질계수를 증가시켜주는 역할을 하는 것으로 나타났다 1.5mol%의 Li을 첨가하고 1275$^{\circ}C$에서 4시간 소결한 시편에서 유전상수는($\varepsilon$$_{r}$) 20.0, Qf는 78,000 그리고 공진주파수 온도계수($\tau$$_{f}$)는 -1.6ppm/$^{\circ}C$의 결과를 얻을 수 있었다.다.

  • PDF

Reduction of Li4Ti5O12 Powder Agglomeration by the Addition of Carbon Black during Solid-state Synthesis (고상법을 사용한 Li4Ti5O12의 합성공정 중 카본블랙 추가를 통한 입자뭉침 억제)

  • Kim, Duri;Kang, Sang June;Hong, Min Young;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.3
    • /
    • pp.63-68
    • /
    • 2016
  • $Li_4Ti_5O_{12}$ is prepared through a solid-state reaction between anatase $TiO_2$ and $Li_2CO_3$ for the negative electrode active materials in quick-charging lithium-ion batteries. The small amount of carbon black (0, 0.5, 1.0, and 3.0 wt%) is added for the reduction of powder agglomeration during heat-treatment. As the amount of the added carbon black increases, the tap density of $Li_4Ti_5O_{12}$ powder gradually decreases. Furthermore, the $Li_4Ti_5O_{12}$ powder prepared with 1.0 wt% of carbon black shows the highest sieved fraction at the powder classification by 325 mesh standard sieve. The $Li_4Ti_5O_{12}$ powders with various contents of carbon black are almost same at the rate capability for the negative electrode materials in lithium-ion batteries.

The Effect of Coating Thickness on the Electrochemical Properties of a Li-La-Ti-O-coated Li[Ni0.3Co0.4Mn0.3]O2 Cathode

  • Lee, Hye-Jin;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3233-3237
    • /
    • 2010
  • A $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode was modified by coating with Li-La-Ti-O, and the effect of the coating thickness on their electrochemical properties was studied. The thickness of the coating on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ was increased by increasing the wt % of the coating material. The rate capability of the Li-La-Ti-O-coated electrode was superior to that of the pristine sample. 1- and 2-wt %-coated samples showed considerable improvement in capacity retention at high C rates. However, the rate capability of a 5-wt %-coated sample decreased. All the coated samples showed a high discharge capacity and slightly improved cyclic performance under a high cut-off voltage (4.8 V) condition. Results of a storage test confirmed that the Li-La-Ti-O coating layer was effective in suppressing the dissolution of the transition metals as it offered protection from the attack of the acidic electrolyte. In particular, the 2- and 5-wt %-coated samples showed a better protection effect than the 1-wt %-coated sample.