DOI QR코드

DOI QR Code

Reduction of Li4Ti5O12 Powder Agglomeration by the Addition of Carbon Black during Solid-state Synthesis

고상법을 사용한 Li4Ti5O12의 합성공정 중 카본블랙 추가를 통한 입자뭉침 억제

  • Kim, Duri (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University) ;
  • Kang, Sang June (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University) ;
  • Hong, Min Young (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
  • 김두리 (한국산업기술대학교 지식기반기술.에너지대학원) ;
  • 강상준 (한국산업기술대학교 지식기반기술.에너지대학원) ;
  • 홍민영 (한국산업기술대학교 지식기반기술.에너지대학원) ;
  • 류지헌 (한국산업기술대학교 지식기반기술.에너지대학원)
  • Received : 2016.03.18
  • Accepted : 2016.03.18
  • Published : 2016.08.31

Abstract

$Li_4Ti_5O_{12}$ is prepared through a solid-state reaction between anatase $TiO_2$ and $Li_2CO_3$ for the negative electrode active materials in quick-charging lithium-ion batteries. The small amount of carbon black (0, 0.5, 1.0, and 3.0 wt%) is added for the reduction of powder agglomeration during heat-treatment. As the amount of the added carbon black increases, the tap density of $Li_4Ti_5O_{12}$ powder gradually decreases. Furthermore, the $Li_4Ti_5O_{12}$ powder prepared with 1.0 wt% of carbon black shows the highest sieved fraction at the powder classification by 325 mesh standard sieve. The $Li_4Ti_5O_{12}$ powders with various contents of carbon black are almost same at the rate capability for the negative electrode materials in lithium-ion batteries.

$Li_4Ti_5O_{12}$는 우수한 사이클 특성과 구조적 안정성을 지니고 있으며 급속충전 및 고출력 특성을 지닌 리튬이온 이차전지용 음극 활물질이다. 고상법을 통한 $Li_4Ti_5O_{12}$의 합성 중에 발생하는 입자간의 뭉침을 억제하기 위하여, 원료인 $TiO_2$$Li_2CO_3$에 카본블랙을 소량 첨가하여 합성을 진행하였다. 원재료 대비하여 카본블랙을 각각 0, 0.5, 1.0, 및 3.0 질량%로 추가하여 고상법으로 $Li_4Ti_5O_{12}$를 합성하였으며, 얻어진 각 분말의 탭밀도와 분급속도를 비교하였다. 카본블랙의 함량이 증가함에 따라 입자의 뭉침이 감소하여 탭밀도가 감소하였으며, 카본블랙을 1.0 질량% 사용한 경우에 가장 빠르게 분급이 진행되었다. 또한, 카본블랙의 사용량에 무관하게 전기화학적 속도특성에서는 차이가 발생하지 않았기 때문에 1.0 질량%의 카본블랙의 추가를 통하여 성능의 손실없이 분말의 제조속도를 높일 수 있다.

Keywords

References

  1. K. M. Colbow, J. R. Dahn, and R. R. Haering, 'Structure and electrochemistry of the spinel oxides $LiTi_2O_4$ and $Li_{4/3}Ti_{5/3}O_4$' J. Power Sources, 26, 397 (1989). https://doi.org/10.1016/0378-7753(89)80152-1
  2. K. Zaghib, M. Armand, and M. Gauthier, 'Electrochemistry of Anodes in Solid-State Li-Ion Polymer Batteries' J. Electrochem. Soc., 145, 3135 (1998). https://doi.org/10.1149/1.1838776
  3. Y. Li, G. L. Pan, J. W. Liu, and X. P. Gao, 'Preparation of $Li_4Ti_5O_{12}$ Nanorods as Anode Materials for Lithium-Ion Batteries' J. Electrochem. Soc., 156, A495 (2009). https://doi.org/10.1149/1.3121216
  4. J. Lim, E. Choi, V. Mathew, D. Kim, D. Ahn, J. Gim, S. Kang, and J. Kim, 'Enhanced High-Rate Performance of $Li_4Ti_5O_{12}$ Nanoparticles for Rechargeable Li-Ion Batteries' J. Electrochem. Soc., 158, A275 (2011). https://doi.org/10.1149/1.3527983
  5. J. Kim and J. Cho, 'Spinel $Li_4Ti_5O_{12}$ Nanowires for High-Rate Li-Ion Intercalation Electrode' Electrochem. Solid State Lett., 10, A81 (2007). https://doi.org/10.1149/1.2431242
  6. J. Huang and Z. Jiang, 'The Synthesis of Hollow Spherical $Li_4Ti_5O_{12}$ by Macroemulsion Method and its Application in Li-Ion Batteries' Electrochem. Solid State Lett., 11, A116 (2008). https://doi.org/10.1149/1.2917585
  7. M.-H. Oh, H.-J. Kim, Y.-J. Kim, W.-K. Son, K.-J. Lim, and S.-G. Park, 'Electrochemical Study of Nanoparticle $Li_4Ti_5O_{12}$ as Negative Electrode Material for Lithium Secondary Battery' J. Korean Electrochem. Soc., 9, 1 (2006). https://doi.org/10.5229/JKES.2006.9.1.001
  8. S.-W. Han, J. H. Ryu, J. Jeong, and D.-H. Yoon, 'Solid-state synthesis of $Li_4Ti_5O_{12}$ for high power lithium ion battery applications' J. Alloys Compd., 570, 144 (2013). https://doi.org/10.1016/j.jallcom.2013.03.203
  9. C.-H. Hong, A. Noviyanto, J. H. Ryu, J. Kim, and D.-H. Yoon, 'Effects of the starting materials and mechanochemical activation on the properties of solid-state reacted $Li_4Ti_5O_{12}$ for lithium ion batteries' Ceram. Int., 38, 301 (2012). https://doi.org/10.1016/j.ceramint.2011.07.007
  10. K. Liu, 'Some factors affecting sieving performance and efficiency' Powder Technol., 193, 208 (2009). https://doi.org/10.1016/j.powtec.2009.03.027
  11. B. Tian, H. Xiang, L. Zhang, Z. Li, and H. Wang, 'Niobium doped lithium titanate as a high rate anode material for Li-ion batteries' Electrochim. Acta, 55, 5453 (2010). https://doi.org/10.1016/j.electacta.2010.04.068
  12. J. Wolfenstine and J. L. Allen, 'Electrical conductivity and charge compensation in Ta doped $Li_4Ti_5O_{12}$' J. Power Sources, 180, 582 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.019
  13. T. Yia, J. Shu, Y. Zhu, X. Zhu, R. Zhu, and A. Zhou, 'Advanced electrochemical performance of $Li_4Ti_{4.95}V_{0.05}O_{12}$ as a reversible anode material down to 0 V' J. Power Sources, 195, 285 (2010). https://doi.org/10.1016/j.jpowsour.2009.07.040
  14. H. Zhao, Y. Li, Z. Zhu, J. Lin, Z. Tian, and R. Wang, 'Structural and electrochemical characteristics of $Li_{4x}Al_xTi_5O_{12}$ as anode material for lithium-ion batteries' Electrochim. Acta, 53, 7079 (2008). https://doi.org/10.1016/j.electacta.2008.05.038
  15. H.-I. Kim, J.-J. Yang, H.-J. Kim, T. Osaka, and S.-G. Park, 'Electrochemical Behavior of $Li_4Ti_5O_{12}/CNT$ Composite for Energy Storage' J. Korean Electrochem. Soc., 13, 235 (2010). https://doi.org/10.5229/JKES.2010.13.4.235
  16. S.-A. Kim, W.-R. Cho, K.-H. Jeong, B.-W. Cho, and B.- K. Na, 'Electrochemical Characteristics of Cr Added $Li_4Ti_5O_{12}$ Prepared by Sol-gel Method' J. Korean Electrochem. Soc., 14, 27 (2011). https://doi.org/10.5229/JKES.2011.14.1.027
  17. G. Zhu, C. Wang, and Y. Xia, 'A Comprehensive Study of Effects of Carbon Coating on $Li_4Ti_5O_{12}$ Anode Material for Lithium-Ion Batteries' J. Electrochem. Soc., 158, A102 (2011). https://doi.org/10.1149/1.3519070
  18. J. Gao, J. Ying, C. Jiang, and C. Wan, 'High-density spherical $Li_4Ti_5O_{12}/C$ anode material with good rate capability for lithium ion batteries' J. Power Sources, 166, 255 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.014
  19. H. Jung, J. Kim, B. Scrosati, and Y. Sun, 'Micron-sized, carbon-coated $Li_4Ti_5O_{12}$ as high power anode material for advanced lithium batteries' J. Power Sources, 196, 7763 (2011). https://doi.org/10.1016/j.jpowsour.2011.04.019
  20. N. Takami, K. Hoshina, and H. Inagaki, 'Lithium Diffusion in $Li_{4/3}Ti_{5/3}O_4$ Particles during Insertion and Extraction' J. Electrochem. Soc., 158, A725 (2011). https://doi.org/10.1149/1.3574037
  21. W. Cho, J. H. Song, M.-S. Park, J.-H. Kim, J.-S. Kim, and Y.-J. Kim, 'Reaction Behavior of $Li_{4+x}Ti_5O_{12}$ Anode Material as Depth of Discharge' J. Electrochem. Sci. Technol., 1, 85 (2010). https://doi.org/10.5229/JECST.2010.1.2.085
  22. J. H. Ryu, 'Polarization Behavior of $Li_4Ti_5O_{12}$ Negative Electrode for Lithium-ion Batteries' J. Electrochem. Sci. Technol., 2, 136 (2011). https://doi.org/10.5229/JECST.2011.2.3.136