• 제목/요약/키워드: $LiNiMnCoO_2$ cell

검색결과 29건 처리시간 0.054초

고전압 구동 Li2MnO3-LiMO2(M=Ni, Co, Mn)/graphite 시스템에서의 전지 수명 및 고온 방치 특성 향상에 효과적인 플루오로 화합물계 전해액에 대한 연구 (Improved Cycle Life and Storage Performance in High-Voltage Operated Li2MnO3-LiMO2(M=Ni, Co, Mn)/Graphite Cell System by Fluorine Compounds as Main Electrolyte Solvent)

  • 유정이;신우철;이병곤
    • 전기화학회지
    • /
    • 제16권3호
    • /
    • pp.162-168
    • /
    • 2013
  • $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) 나노 복합체는 높은 이론 용량을 가지고 있어 전기 자동차용 2차 전지 활물질 재료로 많은 연구가 진행되고 있다. 하지만 $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn)로부터 250 mAh/g 이상의 용량을 구현하기 위해서는 4.4 V 이상의 구동전압이 필요하며, 이러한 높은 구동 전압은 전지의 수명 및 고온 방치 특성의 저해 요소로 작용하고 있다. 본 연구에서는 이러한 문제점을 개선하기 위해서 FEC (Fluoroethylene carbonate), 플루오로알킬 에테르, $LiPF_6$가 주성분인 신규 전해액(F-based EL)을 설계하였다. F-based EL은 1.3 M $LiPF_6$ EC/EMC/DMC (3/4/3, v/v/v) (STD) 대비 안정한 SEI를 형성하며, 산화 안정성이 뛰어나 $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn)/graphite 셀의 수명 및 방치 중 가스 저감에 효과가 있음을 확인할 수 있었다.

Crystal Structure Changes of LiNi0.5Co0.2Mn0.3O2 Cathode Materials During the First Charge Investigated by in situ XRD

  • Lee, Sang-Woo;Jang, Dong-Hyuk;Yoon, Jeong-Bae;Cho, Yong-Hun;Lee, Yun-Sung;Kim, Do-Hoon;Kim, Woo-Seong;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권1호
    • /
    • pp.29-34
    • /
    • 2012
  • The structural changes of $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material for lithium ion battery during the first charge was investigated in comparison with $Li_{1-x}Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ using a synchrotron based in situ X-ray diffraction technique. The structural changes of these two cathode materials show similar trend during first charge: an expansion along the c-axis of the unit cell with contractions along the a- and b-axis during the early stage of charge and a major contraction along the c-axis with slight expansions along the a- and b-axis near the end of charge at high voltage limit. In $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode, however, the initial unit cell volume of H2 phase is bigger than that of H1 phase since the c-axis undergo large expansion while a- and b- axis shrink slightly. The change in the unit cell volume for $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ during charge is smaller than that of $Li_{1-x}Ni_{0.8}Co_{0.15}Al_{0.05}O_2$. This smaller change in unit cell volume may give the $Li_{1-x}Ni_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode material a better structural reversibility for a long cycling life.

리튬2차전지용 LiCoO2/LiNi1/3Mn1/3Co1/3O2계 복합정극의 전기화학적 특성 연구 (A Study on Electrochemical Characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 Mixed Cathode for Li Secondary Battery)

  • 김현수;김성일;엄승욱;김우성
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.64-70
    • /
    • 2006
  • In this study, the $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ mixed cathode electrodes were prepared and their electrochemical performances were measured in a high cut-off voltage. As the content of $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ increased in a mixed cathode, the reversible specific capacity and cycleability of the electrode enhanced, but the rate capability was deteriorated. On the contrary the rate capability of the cathode enhanced, but the reversible specific capacity and cycleability were deteriorated, increasing the content of $LiCoO_2$ in the mixed cathode. The cell of $LiCoO_2/LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ ($50:50 wt\%$) mixed cathode delivered a discharge capacity of ca. 168 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca. 152 mAh/g was obtained at a 2.0 C rate. However, the cell showed very stable cycleability: the discharge capacity of the cell after 20th charge/discharge cycling maintains ca. 163 mAh/g.

리튬 2차 전지용 Li[Co0.1Ni0.15Li0.2Mn0.55]O2 양극물질의 안정성 고찰 (Stability of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 Cathode Material for Lithium Secondary Battery)

  • 박용준
    • 한국전기전자재료학회논문지
    • /
    • 제20권5호
    • /
    • pp.443-449
    • /
    • 2007
  • The structural and thermal stability of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ electrode during cycling process was studied. The sample was prepared by simple combustion method. Although there were irreversible changes on the initial cycle, O3 stacking for $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ structure was retained during the first and subsequent cycling process. Impedance of the test cell was decreased after the first charge-discharge process, which would be of benefit to intercalation and deintercalation of lithium ion on subsequent cycling. As expected, cycling test for 75 times increased impedance of the cell a little, instead, thermal stability of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ was improved. Moreover, based on DSC analysis, the initial exothermic peak was shifted to high temperature range and the amount of heat was also decreased after cycling test, which displayed that thermal stability was not deteriorated during cycling.

리튬이온전지용 정극활물질 LiNi0.4Mn0.3Co0.3O2의 전기화학적 특성 (Electrochemical Properties of LiNi0.4Mn0.3Co0.3O2 Cathode Material for Lithium Ion Battery)

  • 공명철;김현수;김기택;구할본
    • 한국전기전자재료학회논문지
    • /
    • 제19권7호
    • /
    • pp.650-654
    • /
    • 2006
  • [ $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ ] cathode material was synthesized by a mixed hydroxide method. Structural characterization was carried out using X-ray diffraction studies. Electrochemical studies were performed by assembling 2032 coin cells with lithium metal as an anode. DSC (Differential scanning calorimetry) data showed that exothermic reactions of $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ charged to 4.3 V versus Li started at high temperatures$(280\sim390^{\circ}C)$. The cell of $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ mixed cathode delivered a discharge capacity of 150 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of 134 mAh/g was obtained at a 2 C rate. The reversible capacity after 100th cycles was 126 mAh/g when a cell was cycled at a current rate of 0.5 C in $2.8\sim4.3V$.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • 윤원섭;이상우
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

리륨이차전지용 $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ 양극활물질의 표면개질에 따른 전지특성 (Cell Performances of Surface-Treated $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ Material for Li Secondary Battery)

  • 김현수;공명철;김기택;문성인
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.294-295
    • /
    • 2007
  • $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ material was surface modified with Zr-phosphate. Scanning electron microscope, energy dispersive spectroscopy and electrochemical studies indicate that surface modification improve the rate capability. Electrochemical studies were performed by assembling 2032 coin cells with lithium metal as an anode.

  • PDF

RF 스퍼터링법을 이용한 리튬이차전지용 Li[Li0.2Mn0.54Co0.13Ni0.13]O2 양극박막의 제조 및 전기적 특성

  • 임해나;공우연;윤석진;최지원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.413-413
    • /
    • 2011
  • 최근 전기, 전자, 반도체 산업의 발전으로 전 고상 박막리튬전지는 초소형, 초경량의 마이크로 소자의 구현을 위한 고밀도 에너지원으로 각광받고 있다. 현재 양극박막은 대부분LCO(LiCoO2)계열이 이용되고 있으나, 코발트는 높은 가격과 인체 유해성 뿐만 아니라 상대적으로 낮은 용량(~140 mAh/g)등의 단점을 갖고 있어 향후 보다 고용량의 양극박막이 요구된다. 3원계 양극활물질 LiMO2(M=Co,Ni,Mn,etc.)은 우수한 충방전 효율 과 열적 안정성 뿐 아니라 277mAh/g의 높은 이론용량을 갖고 있어 고용량 양극박막으로의 적용시 고용량 박막이차전지 제작이 가능하다. 본 연구에서는 전 고상 박막 전지의 구현을 위하여 RF 스퍼터링법을 사용하여 Li[Li0.2Mn0.54Co0.13Ni0.13]O2 박막을 증착하였다. Li/MnCoNi의 몰 비율을 변화시켜 높은 전기화학적 특성을 갖는 분말을 합성하여 제조한 타겟으로 Pt/TiO2/SiO2/Si 기판위에 RF 스퍼터법을 이용하여 박막을 성장시켰다. 박막 증착 시 가스의 비율은 Ar:O2=3:1로 하고 증착 압력의 조절(0.005~0.02 torr)을 통하여 박막의 두께와 표면 특성을 조절하며 성장시켰다. 또한 박막을 다양한 온도에서($400{\sim}550^{\circ}C$) 열처리하여 결정화도와 전기화학적 특성을 측정하였다. 증착 된 박막의 구조적 특성은 X-ray diffraction(XRD) 과 scanning electron microscopy(SEM)로 관찰되었다. 박막의 전기화학적 특성 평가를 위하여 Cyclic voltammatry를 측정하여 가역성의 정도를 확인하고 WBC3000 battery cycler를 이용한 half-cell 테스트를 통하여 박막의 용량을 평가하였다.

  • PDF

Comparative Analysis of SOC Estimation using EECM and NST in Rechargeable LiCoO2/LiFePO4/LiNiMnCoO2 Cells

  • Lee, Hyun-jun;Park, Joung-hu;Kim, Jonghoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1664-1673
    • /
    • 2016
  • Lithium rechargeable cells are used in many industrial applications, because they have high energy density and high power density. For an effective use of these lithium cells, it is essential to build a reliable battery management system (BMS). Therefore, the state of charge (SOC) estimation is one of the most important techniques used in the BMS. An appropriate modeling of the battery characteristics and an accurate algorithm to correct the modeling errors in accordance with the simplified model are required for practical SOC estimation. In order to implement these issues, this approach presents the comparative analysis of the SOC estimation performance using equivalent electrical circuit modeling (EECM) and noise suppression technique (NST) in three representative $LiCoO_2/LiFePO_4/LiNiMnCoO_2$ cells extensively applied in electric vehicles (EVs), hybrid electric vehicles (HEVs) and energy storage system (ESS) applications. Depending on the difference between some EECMs according to the number of RC-ladders and NST, the SOC estimation performances based on the extended Kalman filter (EKF) algorithm are compared. Additionally, in order to increase the accuracy of the EECM of the $LiFePO_4$ cell, a minor loop trajectory for proper OCV parameterization is applied to the SOC estimation for the comparison of the performances among the compared to SOC estimation performance.

하이브리드 커패시터의 열안정성 개선을 위한 LiFePO4 복합양극 소재에 관한 연구 (Study on LiFePO4 Composite Cathode Materials to Enhance Thermal Stability of Hybrid Capacitor)

  • 권태순;박지현;강석원;정락교;한상진
    • Korean Chemical Engineering Research
    • /
    • 제55권2호
    • /
    • pp.242-246
    • /
    • 2017
  • 고온에서 Mn 이온 용출에 의한 성능저하를 보이는 스피넬 결정구조의 $LiMn_2O_4$ 양극 하이브리드 커패시터의 대안으로 열안정성이 높은 올리빈 결정구조의 $LiFePO_4$ 기반 복합양극 소재의 적용가능성을 연구하였다. $LiFePO_4$/활성탄셀을 이용한 1.0~2.3 V의 충 방전을 통한 수명평가에서 상온($25^{\circ}C$) 및 고온($60^{\circ}C$) 조건 모두에서 충 방전 사이클이 진행됨에 따라 음극(활성탄)의 저전압화에 따른 열화로 인한 용량저하 현상이 나타났다. 이의 해결을 위해 50:50 중량비율로 $LiFePO_4/LiMn_2O_4$, $LiFePO_4$/Activated carbon 및 $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ 복합양극을 제조하여 모노셀 충 방전 실험을 수행한 결과, 층상구조의 $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$를 사용한 전극이 안정적인 전압거동을 보였다. 또한, 2.3 V 및 $80^{\circ}C$에서 1,000시간 부하를 통한 고온 안정성 실험에서도 $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ 복합양극이 상용 $LiMn_2O_4$ 양극에 비해 약 2배 가량 높은 방전용량 유지율을 보였다.