• Title/Summary/Keyword: $LiMn_{2-y}Mg_{y}O_4$

Search Result 36, Processing Time 0.033 seconds

The Electrochemical Characterization of $LiMn_{2-y}M_{y}O_4$ Cathode Material - I. Crystal Structure and AC Impedance Properties of $LiMn_{2-y}Mg_{y}O_4$ ($LiMn_{2-y}M_{y}O_4$ 정극 활물질의 전기화학적 특성 - I. $LiMn_{2-y}Mg_{y}O_4$의 결정 구조 및 AC Impedance 특성)

  • 정인성;김종욱;구할본;김형곤;손명모
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.309-315
    • /
    • 2001
  • Crystallized $LiMn_{2-y}Mg_{y}O_4$ powder was prepared by calcing the mixture of LiOH.$H_2O$, $MnO_2$ and MgO at $800^{\circ}C$ for 36h in an air atmosphere. The structure of $LiMn_{2-y}Mg_{y}O_4$ crystallites was analyzed from powder X-ray diffraction data as a cubic spinel, space group Fd3m. Though all cathode material showed spinel phase based on cubic phase in X-ray diffraction, other peaks gradually exhibited and became intense with increasing y value in $LiMn_{2-y}Mg_{y}O_4$. However, ununiform which calculated by (111) face and (222) face was constant in spite of the increase of y value, except pure $LiMn_2O_4$. AC impedance of Li/$LiMn_{2-y}Mg_{y}O_4$ cells revealed the similar resistance of about $70\Omega$ before cycling. In addition, The impedance of Li/$LiMn_{1.9}Mg_{0.1}O_4$ cell changed during charge and discharge or after cycling.

  • PDF

Preparation and Analysis of$LiMn_2O_4$ Cathode Material substituted Mg and Zn (Mg와 Zn이 치환된 $LiMn_2O_4$ 정극 활물질의 제조 및 특성 분석)

  • Jeong, In-Seong;Gu, Hal-Bon;Han, Kyoo-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.707-710
    • /
    • 2002
  • Spinel $LiMn_2O_4$ and $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4$ powders were synthesized by solid-state method at $800^{\circ}C$ for 36h. Crystal structure and electrochemical properties were analyzed by X-ray diffraction, charge-discharge test, cyclic voltammetry and ac impedance to $LiMn_2O_4$ and $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$. All cathode material showed spinel structure in X-ray diffraction. $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$ cell substituted $Mg^{2+}$ and $Zn^{2+}$ showed excellent discharge capacities than other cells, which it presented about 120mAh/g at the 1st cycle and about 73mAh/g at the 250th cycle, respectively. AC impedance of $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$ cells showed the similar resistance of about $65{\sim}110{\Omega}$ before cycling.

  • PDF

Stabilization of LiMn2O4 Electrode for Lithium Secondary Battery(I) - Electrode Characteristics on the Substitution of Metal Oxides in LiMn2O4 Cathode Material - (리튬이차전지용 정극활물질 LiMn2O4의 안정화(I) - LiMn2O4에 대한 금속산화물의 치환에 따른 전극 특성 -)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.774-780
    • /
    • 1998
  • For the stabilization of the spinel structured $LiMn_2O_4$, a fraction of manganese was substituted with various metals such as Mg, Fe, V, W, Cr, Mo with Mn that had a similar ionic radii ($LiM_xMn_{2-x}O_4(0.05{\leq}x{\leq}0.02)$). The $LiM_xMn_{2-x}O_4$ showed a substantial improvement as lower capacity loss than that of the spinel structured $LiMn_2O_4$ when it was used as a cathode material. And with the partial substitution, the chemical diffusion coefficient for $LiMg_{0.05}Mn_{1.9}O_4$ and $LiCr_{0.1}Mn_{1.9}O_4$ was increased by and order of magnitude compared to that of the $LiMn_2O_4$ with spinel structure. The results showed that significant improvement can be made on the electrochemical characteristics as the structure of the $LiMn_2O_4$ electrode material was stabilized by the partial substitution.

  • PDF

Crystal Structure and Electrochemical Properties of LiMn2-yMyO4 Cathode Material by Complex Substitution of Mg and Zn (Mg와 Zn의 복합치환에 따른 LiMn2-yMyO4 정극 활물질의 결정 구조 및 전기화학적 특성)

  • 정인성;정해덕;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.361-366
    • /
    • 2002
  • Spinel $LiMn_{2-y}M_yO_4$ and $LiMn_{2-y}M_yO_4$ (M=Mg, Zn) powders were synthesized by solid-state method at $800^{\circ}C$ for 37h. Crystal structure and electrochemical properties were analyzed by X-ray diffraction, charge-discharge test, cyclic voltammetry and ac impedance to $LiMn_{2-y}M_yO_4$. All cathode material showed spinel structure in X-ray diffraction. Ununiform distortion which calculated by (111) face and (222) face was almost constant in spite of the change of the kind and the substituting ratio of the metal cation in $LiMn_{2-y}M_yO_4$ (M=Mg, Zn). $LiMn_{1.9}Mg_{0.05}Zn_{0.05}O_4/Li$ cell substituted $Mg^{+2}$ and $Zn^{+2}$ showed excellent discharge capacities than other cells, which it presented about 120mAh/g at the 1st cycle and about 73mAh/g at the 250th cycle, respectively. AC impedance of $LiMn_{2-y}M_yO_4/Li$ cells showed the similar resistance of about 65~110$\Omega$ before cycling.

The Electrochemical Characterization of$LiMn_{2-y}M_yO_4$ Cathode Material - II. Charge and Discharge Property and Cyclic Voltametry of $LiMn_{2-y}M_yO_4$ (M=Zn, Mg) ($LiMn_{2-y}M_yO_4$ 정극 활물질의 전기화학적 특성 - II. $LiMn_{2-y}M_yO_4$ (M=Zn, Mg)의 충방전 및 순환전위전류 특성)

  • 정인성;김종욱;구할본;김형곤;손명모;박복기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.4
    • /
    • pp.316-322
    • /
    • 2001
  • Cathode materials $LiMn_{2-y}$$M_{y}$ $O_4$(M=Zn and Mg) were obtained by reacting the mixture of LiOH.$H_2O$, Mn $O_2$ and MgO ar ZnO at 80$0^{\circ}C$ for 36h in an air atmosphere. These materials showed an extended cycle life in lithium-anode cells working at room temperatue in a 3.0 to 4.3V potential window. Among these materials, LiM $n_{1.9}$M $g_{0.1}$ $O_4$ showed the best cycle performance in terms of the capacity and cycle life. The discharge capacities of the cathode for the Li/LiM $n_{1.9}$ $M_{0.1}$ $O_4$ cell at the 1st cycle and at the 70th cycle were about 120 and 105mAh/g, respectively. This cell capacity is retained by 88% after 70th cycle. In cyclic voltammetry measurement, all cells revealed tow oxidation peaks and reduction peaks. However, Li/$LiMn_{2-y}$$M_{y}$ $O_4$ cell substituted with Zn and Mg showed new reaction peak during reduction reaction.eaction.ion.ion.

  • PDF

Charge-discharge capacity and AC impedance of $LiMn_{2-y}M_{y}O_{4}$(M=Mg, Zn) cathode ($LiMn_{2-y}M_{y}O_{4}$(M=Mg, Zn) 정극의 충방전 용량 및 AC 임피던스 특성)

  • 정인성;위성동;이승우;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.455-458
    • /
    • 2001
  • Spinel $LiMn_{2-y}$$M_{y}$ $O_4$powder was prepared solid-state method by calcining the mixture of LiOH - $H_2O$, Mn $O_2$, ZnO and MgO at 80$0^{\circ}C$ for 36h. To investigate the effect of substitution with Mg, Zn cation, charge-discharge experiments and initial impedance spectroscopy performed. The structure of $LiMn_{2-y}$$M_{y}$ $O_4$crystallites was analyzed from powder X-ray diffraction data as a cubic spinel, space group Fd3m. all cathode material showed spinel phase based on cubic phase in X-ray diffraction. Ununiform which calculated by (111) face and (222) face was constant in spite of the change of y value, except PUf\ulcorner LiM $n_2$ $O_4$. The discharge capacities of the cathode for the cation subbstitUtes $LiMn_{2-y}$$M_{y}$ $O_4$/Li cell at the 1st cycle and at the 40th cycle were about 120~124 and 108~112mAh/g except LiM $n_{1.9}$Z $n_{0.1}$ $O_4$/Li cell, respectively. This cell capacity is retained by 93% after 40th cycle. AC impedance of $LiMn_{2-y}$$M_{y}$ $O_4$/Li cells revealed the similar resistance of about 65~110$\Omega$ before cycling. before cycling.g.g.

  • PDF

The characterization of charge-discharge and initial impedance of $LiMn_{2-y}Mg_yO_4$ by change of temperature (온도 변화에 따른 $LiMn_{2-y}Mg_yO_4$의 충방전 및 초기 임피던스 특성)

  • Jeong, In-Seong;Lee, Seung-Woo;Kim, Min-Sung;Gu, Hal-Bon;Gu, Gye-Choon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.18-22
    • /
    • 2001
  • Spinel $LiMn_{2-y}Mn_{y}O_4$ powder was prepared solid-state method by calcining the mixture of $LiOH{\cdot}H_2O$, $MnO_2$ and MgO at $800^{\circ}C$ for 36h. To investigate the effect of temperature for cycle behaviour of cathode material during cycling, charge-discharge experiments and initial impedance spectroscopy performed by the condition of the charge-discharge temperature. Initial charge-discharge capacity was gradually increased by rising charge-discharge temperature. However, capacity was suddenly decreased at high temperature during cycling. Capacity at low temperature was almost constant during cycling. It confirmed because Mn dissolution is more serious at high temperature than at low temperature.

  • PDF

Structural and Electrochemical Properties of Doped LiFe0.48Mn0.48Mg0.04PO4 as Cathode Material for Lithium ion Batteries

  • Jang, Donghyuk;Palanisamy, Kowsalya;Kim, Yunok;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.102-107
    • /
    • 2013
  • The electrochemical properties of Mg-doped $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ and pure $LiFe_{0.5}Mn_{0.5}PO_4$ olivine cathodes are examined and the lattice parameters are refined by Rietveld analysis. The calculated atomic parameters from the refinement show that $Mg^{2+}$ doping has a significant effect in the olivine $LiFeMnPO_4$ structure. The unit cell volume is 297.053(2) ${\AA}^3$ for pure $LiFe_{0.5}Mn_{0.5}PO_4$ and is decreased to 296.177(1) ${\AA}^3$ for Mg-doped $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ sample. The doping of $Mg^{2+}$ cation with atomic radius smaller than $Mn^{2+}$ and $Fe^{2+}$ ion induces longer Li-O bond length in $LiO_6$ octahedra of the olivine structure. The larger interstitial sites in $LiO_6$ octahedra facilitate the lithium ion migration and also enhance the diffusion kinetics of olivine cathode material. The $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ sample with larger Li-O bond length delivers higher discharge capacities and also notably increases the rate capability of the electrode.

Growth and defect structures of undoped and heavily MgO-doped LiNbO3 single crystals (Undoped and heavily MgO-doped $LiNbO_3$ 결정의 성장 및 결함구조)

  • 김상수
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.5
    • /
    • pp.447-453
    • /
    • 1999
  • Congruent $LiNbO_3$ crystals with doped Mg and codoped with Mn or Fe were grown by the Czochralski method. It is known that the physical properties of $LiNbO_3$ depend strongly on the addition of Mg and transition metals. This is established by studying the following properties; XRD patterns, the phase transition temperature, energy of the fundamental absorption edge, the shape of the absorption band of the $OH^-$ vibration and lines of the ESR of $Fe^{3+},\; Mn^{2+}$. The position of the UV absorption edge and the shape and peak point of the absorption band of the $OH^-$ vibrational band changed monotonously up to a critical concentration of $Mg^{2+}$ ions. The mechanism of the incorporation of Mg ions changes at this concentration. The transition temperature was estimated by measuring the dielectric temperature behavior up to $1230^{\circ}C$ in a frequency range of 100Hz to 10MHz. EPR of $Mn^{2+}\;and\; Fe^{3+}$ ions were employed to investigated the Mg doping effects in the $LiNbO_3$ crystal. The increase of linewidths and the asymmetry of signals were observed in all crystals. New signals of $Fe^{3+}$ arising from the new centers were observed I the heavily Mg-doped crystals.

  • PDF

The Electrochemical Characterization of $LiMn_{2-y}M_{y}O_{4}$ Cathode Material. III. The Effect of Temperature on the Charge-discharge Property and AC Impedance of $LiMn_{2-y}M_{y}O_{4}$ ($LiMn_{2-y}M_{y}O_{4}$ 정극 활물질의 전기화학적 특성. III. $LiMn_{2-y}M_{y}O_{4}$의 충방전 특성과 AC 임피던스의 온도 의존성)

  • 정인성;구할본;김종욱;손명모;이헌수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.8
    • /
    • pp.663-669
    • /
    • 2001
  • Spinel LiM $n_2$ $O_4$ and LiM $n_{1.9}$M $g_{0.1}$ $O_4$ power was synthesized with solid-state method by calcining the mixture of LiOH.$H_2O$, Mn $O_2$ and MgO at 80$0^{\circ}C$ for 36 h in an air atmosphere. To investigate the effect of temperature on he cycle performance of cathode material during cycling, charge-discharge experiments and ac impedance measurement were performed. Initial discharge capacity was gradually increased with the increase of charge-discharge temperature. Discharge capacity at high temperature was suddenly decreased during cycling. On the other hand, discharge capacity at low temperature was almost constant during cycling. It confirmed that Mn dissolution is serious at high temperature than at low temperature. LiM $n_2$ $O_4$ and LiM $n_{1.9}$M $g_{0.1}$ $O_4$ showed the best capacity and stability at room temperature.ure.ure.

  • PDF