• Title/Summary/Keyword: $LiMn_{2-y}M_yO_4$

Search Result 139, Processing Time 0.024 seconds

Improvement of Electrochemical Properties and Thermal Stability of a Ni-rich Cathode Material by Polypropylene Coating

  • Yoo, Gi-Won;Son, Jong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.179-184
    • /
    • 2016
  • The interface between the surface of a cathode material and the electrolyte gives rise to surface reactions such as solid electrolyte interface (SEI) and chemical side reactions. These reactions lead to increased surface resistance and charge transfer resistance. It is consequently necessary to improve the electrochemical characteristics by suppressing these reactions. In order to suppress unnecessary surface reactions, we coated cathode material using polypropylene (PP). The PP coating layer effectively reduced the SEI film that is generated after a 4.3 V initial charging process. By mitigating the formation of the SEI film, the PP-coated Li[(Ni0.6Co0.1Mn0.3)0.36(Ni0.80Co0.15Al0.05)0.64)]O2(NCS) electrode provided enhanced transport of Li+ ions due to reduced SEI resistance (RSEI) and charge transfer resistance (Rct). The initial charge and discharge efficiency of the PP-coated NCS electrode was 96.2 % at a current density of 17 mA/g in a voltage range of 3.0 ~ 4.3 V, whereas the efficiency of the NCS electrode was only 94.7 %. The presence of the protective PP layer on the cathode improved the thermal stability by reducing the generated heat, and this was confirmed via DSC analysis by an increased exothermic peak.

Characteristics of Groundwater Pollution and Contaminant Attenuation at Waste Disposal Sites (폐기물 매립지 주변의 지하수 오염과 오염물질의 지연 특성)

  • 오석영;전효택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.1
    • /
    • pp.37-49
    • /
    • 1996
  • The objectives of this study are to investigate the groundwater and surface water contamination, to interpret the attenuation mechanism of contaminant transport, and to find the appropriate contamination indicator. at the two big landfill sites : Nanjido Landfill and Hwasung Landfill. Leachate from the Nanjido, th, Hwasung and the Kimpo waste disposal sites is characterized by high temperature (31.7-40.1$^{\circ}C$), high electric conductivity (14,650-32,800 ${\mu}$S/cm), somewhat higher pH(7.58-8.45) and low Eh (-119.4-20.4 mV), and is enriched in both major (Na$^{+}$, K$^{+}$, Ca$^{2+}$, Mg$^{2+}$, HC $O_3$$^{-}$, Cl$^{-}$) and minor (Mn, Sr$^{2+}$, Ba$^{2+}$, Li$^{+}$, F$^{-}$, Br$^{-}$) ions. Municipal solid waste leachate and industrial waste leachate are effectively discriminated by the content of S $O_4$$^{2-}$, Fe, and heavy metals. The attenuation mechanism of each component was assessed using the chemical analysis. Cl-normalizing process, WATEQ4F simulation, and preceding flownet analysis. Based on the calculation of Contamination Factor, K, Na, Ca, Mg, B, Zn, HC $O_3$, Cl, F, Br and TOC are effective contamination indicators in the Nanjido landfill site, and K, Na, Ca, Mg, B, S $O_4$, HC $O_3$, Cl, F, Br and TOC in the Habsburg landfill site Particularly, TOC is the best contamination indicator in landfill sites influenced by sea water.

  • PDF

A Study on Co-precipitation of Positive Electrode Active Material for Recycled Lithium-ion Batteries Using Black Powder Leaching Solution (블랙 파우더 침출용액을 이용한 재활용 리튬이온전지의 양극 활물질 공침법에 대한 연구)

  • JAEGEUN LEE;JAEKYUNG LEE;SUNGGI KWON;GYECHOON PARK
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.3
    • /
    • pp.336-344
    • /
    • 2024
  • In this study, a Ni0.9Co0.05Mn0.05(OH)2 precursor used as an anode active material using a black powder leaching solution of a recycled lithium ion battery was prepared through coprecipitation synthesis with co-precipitation time, NH4OH concentration, pH, and stirring time as variables. The characteristics of the prepared powder were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), particle size analysis (PSA), and inductively coupled plasma optical emission spectroscopy (ICP-OES). It was confirmed that the single crystal thickness of the LiNi1-x-yCoxMnyO2 (NCM) precursor changes depending on the NH4OH concentration and reaction pH value, and thicker single crystals are formed at 2 M NH4OH compared to 1 M and at pH 10.8-11.8 compared to pH 11.8-12.0. NCM precursor particles increased with coprecipitation time, and it was confirmed that the 72 hours NCM precursor had the largest particle size. Through ICP-OES analysis, it was confirmed that the NCM precursor was synthesized with the target composition of Ni2+:Co2+:Mn2+=90:5:5.

Mineral Chemistry of Cassiterite, Columbite, Tantalite and Associated Minerals from Soonkyoung Tin-bearing Pegmatite (순경(順鏡) 페그마타이트에서 산출(産出)되는 석석(錫石), 콜럼바이트, 탄탈라이트 및 수반광물(隨伴鑛物)에 대한 광물화학(鑛物化學))

  • Kim, Soo-Young;Moon, Hi-Soo;Park, No Young
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.327-339
    • /
    • 1989
  • Cassiterite, tantalite, columbite and tantalian rutile are found as accessory minerals in Soonkyoung tin-bearing pegmatites. These minerals occur as finely disseminated specks of up to micro-size in diameter and coarse grain size varying from 0.5-50mm in albite, muscovite and quartz assemblage. Cassiterite geneally shows a moderate to intense pleochroism, having a color brownish yellow to deep reddish brown. The substitution of $Ta^{+5}$, $Nb^{+5}$, $Ti^{+4}$ and Fe* for $Sn^{+4}$ in cassiterite ranges 0.01-0.10 mol%. The zoned cassiterite give a higher Ta/Nb ratios in margin than the ratios in core. This is due to the preferential $Ta^{+5}$ affinity to lower temperature during the crystallization of cassiterite. Tantalite-columbite and tantalian rutile occur in cassitertie with exsolution texture and/or infiltrate into the micro-fissures of cassiterite with micro quartz vein. The compositions of tantalite-columbite show the wide ranges of $Ta_2O_5$ : 14-46 wt.%, $Nb_2O_5$ : 60-28 wt. % and FeO*: 10.15 wt.%. The variation of chemical composition in tantalit-columbite exhibits the decreasing trends of $Mn^{+2}/M^{+2}+Fe^*$ with $Ta^{+5}/Ta^{+5}+Nb^{+5}$ increasing. These trends of vatiations indicate that the Ta/Nb fractionation are enhanced by higher Ta-complex activity in late stage of pegmatite consolidation and lower activity of F in agreements with the F-and Li-micas not to be developed in Soonkyoung tin-bearing pegmatite.

  • PDF

Piezoelectric and Dielectric Properties of Low Temperature Sintered Pb(Mn1/3Nb2/3)0.02(Ni1/3Nb2/30.12(ZrxTi1-x)0.86O3 System Ceramics

  • Yoo, Ju-Hyun;Lee, Sang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.121-124
    • /
    • 2009
  • In this study, in order to develop compositions of ceramics suitable for piezoelectric actuator and ultrasonic vibrator applications using low temperature sintering, multilayer, PMN-PNN-PZT ceramics were fabricated using $Li_2CO_3$ and $Na_2CO_3$ as sintering aids. Their structural, piezoelectric and dielectric characteristics were investigated according to the Zr/Ti ratio. As the Zr/Ti ratio increased, the electromechanical coupling factor $k_p$, and piezoelectric constant $d_{33}$ and the mechanical quality factor $Q_m$ all increased with Zr/Ti ratio and then decreased after the ratio exceeded 50/50. At the ratio of Zr/Ti =49/51 and sintering temperature of $900^{\circ}C$; the density, electromechanical coupling factor $k_p$, dielectric constant ${\varepsilon}_r$ piezoelectric $d_{33}$ constant and mechanical quality factor $Q_m$ all showed the optimum values of 7.900 $g/cm^3$, 0.576, 856, 312 pC/N, 1,326, respectively. These property values are very suitable for multilayer ceramics actuator applications.

A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batreries Cell Powder (폐 배터리 셀 분말의 선택적 리튬 침출을 위한 질산염화 공정 최적화 연구)

  • Jung, Yeon Jae;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, the optimal nitration process for selective lithium leaching from powder of a spent battery cell (LiNixCoyMnzO2, LiCoO2) was studied using Taguchi method. The nitration process is a method of selective lithium leaching that involves converting non-lithium nitric compounds into oxides via nitric acid leaching and roasting. The influence of pretreatment temperature, nitric acid concentration, amount of nitric acid, and roasting temperature were evaluated. The signal-to-noise ratio and analysis of variance of the results were determined using L16(44) orthogonal arrays. The findings indicated that the roasting temperature followed by the nitric acid concentration, pretreatment temperature, and amount of nitric acid used had the greatest impact on the lithium leaching ratio. Following detailed experiments, the optimal conditions were found to be 10 h of pretreatment at 700℃ with 2 ml/g of 10 M nitric acid leaching followed by 10 h of roasting at 275℃. Under these conditions, the overall recovery of lithium exceeded 80%. X-ray diffraction (XRD) analysis of the leaching residue in deionized water after roasting of lithium nitrate and other nitrate compounds was performed. This was done to determine the cause of rapid decrease in lithium leaching rate above a roasting temperature of 400℃. The results confirmed that lithium manganese oxide was formed from lithium nitrate and manganese nitrate at these temperatures, and that it did not leach in deionized water. XRD analysis was also used to confirm the recovery of pure LiNO3 from the solution that was leached during the nitration process. This was carried out by evaporating and concentrating the leached solution through solid-liquid separation.

Stabilization of High Nickel Cathode Materials with Core-Shell Structure via Co-precipitation Method (공침법을 통하여 합성된 코어-쉘 구조를 가지는 하이 니켈 양극 소재 안정화)

  • Kim, Minjeong;Hong, Soonhyun;Jeon, Heongkwon;Koo, Jahun;Lee, Heesang;Choi, Gyuseok;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.216-222
    • /
    • 2022
  • The capacity of high nickel Li(NixCoyMn1-x-y)O2 (NCM, x ≥ 0.8) cathodes is known to rapidly decline, a serious problem that needs to be solved in a timely manner. It was reported that cathode materials with the {010} plane exposed toward the outside, i.e., a radial structure, can provide facile Li+ diffusion paths and stress buffer during repeated cycles. In addition, cathodes with a core-shell composition gradient are of great interest. For example, a stable surface structure can be achieved using relatively low nickel content on the surface. In this study, precursors of the high-nickel NCM were synthesized by coprecipitation in ambient atmosphere. Then, a transition metal solution for coprecipitation was replaced with a low nickel content and the coprecipitation reaction proceeded for the desired time. The electrochemical analysis of the core-shell cathode showed a capacity retention of 94 % after 100 cycles, compared to the initial discharge capacity of 184.74 mA h/g. The rate capability test also confirmed that the core-shell cathode had enhanced kinetics during charging and discharging at 1 A/g.

Sulfur Dioxide, Mineral Contents and Physicochemical Properties Generated during Manufacture of Bamboo Salt (죽염 제조공정에 따른 이산화황, 미네랄 함량 및 이화학적 특성)

  • Kim, Hag-Lyeol;Lee, Seong-Jae;Lee, Jung-Hee;Kim, In-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1248-1256
    • /
    • 2014
  • The purpose of this study was to investigate the mechanisms of behind $SO_2$ formation and elevated cause of reducing power in purple bamboo salt (PBS) along with an analysis of physicochemical properties, content of sulfur compounds, oxidation reduction potential (ORP), mineral contents of salt type (MSS, mudflat solar salt; BS, bamboo salt), and addition of raw bamboo (RB). $SO_2$ content of 630 ppm was detected in PBS. $SO_2$ was not detected in MSS, BS, or RB, whereas $SO_2$ (782 ppm) from $K_2SO_4$ was detected after heating a NaCl, KCl, $MgCl_2$, $MgSO_4$, MgO, $CaCl_2$, $K_2SO_4$, and $FeSO_4$ with RB. $SO_2$ content of BS increased with baking time, and it originated from BSRB1 (13.88 ppm) to BSRB4 (109.13 ppm). $SO_3{^{2-}}$ originated only from MSSRB4 and BSRB2~BSRB4. Sulfate ion content decreased along with increasing $SO_2$ and sulfite ion contents. ORP increased with baking time of MSS and BS, and it was present at higher levels in BSRB4 (-211.40 mV) of BS than MSS. Insoluble content was higher in BS than MSS. Further, Ca, K, and Mg ion contents decreased in MSS and increased in BS with baking time. BSRB4 had 1.4 fold higher levels of Ca, 1.5 fold higher levels of Mg, and 1.8 fold higher levels of K than BS. Li, Al, Mn, Fe, and Sr in MSS as well as Al, Fe, and Ni in BS increased with baking time. Anions (Cl, $NO_3$, and Br) and heavy metals (Pb, Cd, Hg, and As) between MSS and BS were not significantly different. These results suggest that the reducing power of BS was due to $SO_2$ and sulfite ion. To increase the amounts of these compounds and reducing power, higher melting temperature and longer baking time are necessary along with BS, which is created by the addition of RB to roasted salt.

Magnetic Tunnel Junctions with AlN and AlO Barriers

  • Yoon, Tae-Sick;Yoshimura, Satoru;Tsunoda, Masakiyo;Takahashi, Migaku;Park, Bum-Chan;Lee, Young-Woo;Li, Ying;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • We studied the magnetotransport properties of tunnel junctions with AlO and AlN barriers fabricated using microwave-excited plasma. The plasma nitridation process provided wider controllability than the plasma oxidization for the formation of MTJs with ultra-thin insulating layer, because of the slow nitriding rate of metal Al layers, comparing with the oxidizing rate of them. High tunnel magnetoresistance (TMR) ratios of 49 and 44% with respective resistance-area product $(R{\times}A) of 3 {\times} 10^4 and 6 {\times} 10^3 {\Omega}{\mu}m^2$ were obtained in the Co-Fe/Al-N/Co-Fe MTJs. We conclude that AlN is a hopeful barrier material to realize MTJs with high TMR ratio and low $R{\times}A$ for high performance MRAM cells. In addition, in order to clarify the annealing temperature dependence of TMR, the local transport properties were measured for Ta $50{\AA} /Cu 200 {\AA}/Ta 50 {\AA}/Ni_{76}Fe_{24} 20 {\AA}/Cu 50 {\AA}/Mn_{75}Ir_{25} 100 {\AA}/Co_{71}Fe_{29} 40 {\AA}/Al-O$ junction with $d_{Al}= 8 {\AA} and P_{O2}{\times}t_{0X}/ = 8.4 {\times} 10^4$ at various temperatures. The current histogram statistically calculated from the electrical current image was well in accord with the fitting result considering the Gaussian distribution and Fowler-Nordheim equation. After annealing at $340^{\circ}C$, where the TMR ratio of the corresponding MTJ had the maximum value of 44%, the average barrier height increased to 1.12 eV and its standard deviation decreased to 0.1 eV. The increase of TMR ratio after annealing could be well explained by the enhancement of the average barrier height and the reduction of its fluctuation.