• Title/Summary/Keyword: $LiM_xMn_{2-x}O_4$ Cathode

Search Result 57, Processing Time 0.029 seconds

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

The relation of the crystal phase and the charge/discharge capacity of $Li[Li_yMn_{2-y}]O_4$ cathode materials substituted Li (Li 치환된 $Li[Li_yMn_{2-y}]O_4$ 정극 활물질의 결정 구조와 충방전 용량과의 관계)

  • Jeong, In-Seong;Gu, Hal-Bon;Park, Bok-Gi;Son, Myeng-Mo;Lee, Heon-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.117-120
    • /
    • 2000
  • The relation of crystal phase and charge/discharge capacity of $Li[Li_yMn_{2-y}]O_4$ were studied for different degrees of Li substitution (y). All cathode material showed spinel phase based on cubic phase in X-ray diffraction. Other peaks didn't show in spite of the increase of y value in $Li[Li_yMn_{2-y}]O_4$. Ununiform of $Li[Li_yMn_{2-y}]O_4$ which calcinated by (111) face and (222) face was more stable than that of pure $LiMn_2O_4$. In addition, At TG analysis, calcined $Li[Li_{0.1}Mn_{1.9}]O_4$ exhibited much mass loss at $800{\mu}m$. The cycle performance of the $Li(Li_yMn_{2-y}]O_4$ was improved by the substitution of $Li^{1+}$ for $Mn^{3+}$ in the octahedral sites. Specially, $Li[Li_{0.08}Mn_{1.92}]O_4$ and $Li[Li_{0.1}Mn_{1.9}]O_4$ cathode materials showed the charge and discharge capacity of about 125mAh/g at first cycle, and about 95mAh/g after 70th cycle. It is excellent than that of pure $LiMn_2O_4$, which 125mAh/g at first cycle, 65mAh/g at 70th.

  • PDF

Synthesis and Characterizations of Mn1+XCo2-XO4 Solid Solution Catalysts for Highly Efficient Li/Air Secondary Battery (고효율의 리튬/공기 이차전지 공기전극용 Mn1+XCo2-XO4 고용체 촉매 합성 및 분석)

  • Park, Inyeong;Jang, Jaeyong;Lim, Dongwook;Kim, Taewoo;Shim, Sang Eun;Park, Seok Hoon;Baeck, Sung-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.137-142
    • /
    • 2015
  • $Mn_{1+X}Co_{2-X}O_4$ solid solutions with various Mn/Co ratios were synthesized by a combustion method, and used as cathode catalysts for lithium/air secondary battery. Their electrochemical and physicochemical properties were investigated. The morphology was examined by transmission electron microscopy (TEM), and the crystallinity was confirmed by X-ray diffraction (XRD) analyses. For the measurement of electrochemical properties, charge and discharge measurements were carried out at a constant current density of $0.2mA/cm^2$, monitoring the voltage change. Electrochemical impedance spectroscopy (EIS) analyses were also employed to examine the change in charge transfer resistance during charge-discharge process. $Mn_{1+X}Co_{2-X}O_4$ solid solutions showed enhanced cycleability as a cathode of Li/air secondary battery, and the performance was found to be strongly dependent on Mn/Co ratio. Among synthesized catalysts, $Mn_{1.5}Co_{1.5}O_4$ exhibited the best performance and cycleability, due to high charge transfer rate.

The Studies of Structural Stability of LiNi0.5Mn1.5O4 Spinel (스피넬 LiNi0.5Mn1.5O4 양극 활물질의 구조 안정성 연구)

  • Park, Sung-Bin;Kim, Yool-Koo;Lee, Wan-Gyu;Cho, Won-Il;Jang, Ho
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.174-181
    • /
    • 2008
  • The stability of the cathode materials for Li secondary battery is an important factor for its cyclability. The present paper focuses on the structural stability of $LiNi_{0.5}Mn_{1.5}O_4$ during lithiation/delithiation of Li ions and compared to that of $LiMn_{2}O_4$. $LiMn_{2}O_4$ and $LiNi_{0.5}Mn_{1.5}O_4$ powders are synthesized using a solgel method and their structural and electrochemical properties are investigated by XRD, SEM, and charge-discharge tests. $Li_xMn_2O_4$ and $Li_xNi_{0.5}Mn_{1.5}O_4$(x = 0.9,0.5,0.1) specimens are obtained after charge/discharge tests by controlling the cut-off voltage for XRD and TEM investigation. The charge-discharge tests shows that initial capacity of $LiNi_{0.5}Mn_{1.5}O_4$ is 125 mAh/g and that of LiMn2O4 is around 100 mAh/g. The capacity of $LiNi_{0.5}Mn_{1.5}O_4$ is maintained 95% of its initial capacity whereas the capacity of $LiMn_{2}O_4$ is maintained 65% of its initial capacity.

Adipic Acid Assisted Sol-Gel Synthesis of Li1+x(Mn0.4Ni0.4Fe0.2)1-xO2 (0 < x < 0.3) as Cathode Materials for Lithium Ion Batteries

  • Karthikeyan, Kaliyappan;Amaresh, Samuthirapandian;Son, Ju-Nam;Kim, Shin-Ho;Kim, Min-Chul;Kim, Kwang-Jin;Lee, Sol-Nip;Lee, Yun-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.89-94
    • /
    • 2013
  • Layered $Li_{1+x}(Mn_{0.4}Ni_{0.4}Fe_{0.2})_{1-x}O_2$ (0 < x < 0.3) solid solutions were synthesized using solgel method with adipic acid as chelating agent. Structural and electrochemical properties of the prepared powders were examined by means of X-ray diffraction, Scanning electron microscopy and galvanostatic charge/discharge cycling. All powders had a phase-pure layered structure with $R\bar{3}m$ space group. The morphological studies confirmed that the size of the particles increased at higher x content. The charge-discharge profiles of the solid solution against lithium using 1 M $LiPF_6$ in EC/DMC as electrolyte revealed that the discharge capacity increases with increasing lithium content at the 3a sites. Among the cells, $Li_{1.2}(Mn_{0.32}Ni_{0.32}Fe_{0.16})O_2$ (x = 0.2)/$Li^+$ exhibits a good electrochemical property with maximum initial capacity of 160 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ current density and the capacity retention after 25 cycles was 92%. Whereas, the cell fabricated with x = 0.3 sample showed continuous capacity fading due to the formation of spinel like structure during the subsequent cycling. The preparation of solid solutions based on $LiNiO_2-LiFeO_2-Li_2MnO_3$ has improved the properties of its end members.

Role of Sulfone Additive in Improving 4.6V High-Voltage Cycling Performance of Layered Oxide Battery Cathode (층상계 산화물 양극의 4.6V 고전압 특성 향상에서의 Sulfone 첨가제의 역할)

  • Kang, Joonsup;Nam, Kyung-Mo;Hwang, Eui-Hyeong;Kwon, Young-Gil;Song, Seung-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Capacity of layered lithium nickel-cobalt-manganese oxide ($LiNi_{1-x-y}Co_xMn_yO_2$) cathode material can increase by raising the charge cut-off voltage above 4.3 V vs. $Li/Li^+$, but it is limited due to anodic instability of conventional electrolyte. We have been screening and evaluating various sulfone-based compounds of dimethyl sulfone (DMS), diethyl sulfone (DES), ethyl methyl sulfone (EMS) as electrolyte additives for high-voltage applications. Here we report improved cycling performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode by the use of dimethyl sulfone (DMS) additive under an aggressive charge condition of 4.6 V, compared to that in conventional electrolyte, and cathode-electrolyte interfacial reaction behavior. The cathode with DMS delivered discharge capacities of $198-173mAhg^{-1}$ over 50 cycles and capacity retention of 84%. Surface analysis results indicate that DMS induces to form a surface protective film at the cathode and inhibit metal-dissolution, which is correlated to improved high-voltage cycling performance.

The Structural and Electrochemical Properties of Li[Ni0.6-xBaxCo0.1Mn0.3]O2 (x = 0, 0.01) by Barium Doping (Barium 도핑에 따른 Li[Ni0.6-xBaxCo0.1Mn0.3]O2(x=0, 0.01) 의 구조 분석 및 전기화학적 특성)

  • Jang, Byeong-Chan;Yoo, Gi-Won;Yang, Su-Bin;Min, Song-Gi;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.222-228
    • /
    • 2014
  • Ni-rich system $Li[Ni_{1-x-y}Co_xMn_y]O_2$ of lithium secondary battery cathode material keep a high discharge capacity. However, by the Ni content increases, there is a problem that the electrochemical properties and stability of the structure are reduced. In order to solve these problems, research for positive ion doping is performed. The one of the cathode material, barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01), was synthesized by the precursor, $Ni_{0.6}Co_{0.1}Mn_{0.3}(OH)_2$, from the co-precipitation method. The barium doped materials have studied the structural and electrochemical properties. The analysis of structural properties, results of X-ray diffraction analysis, and those results confirmed the change of the lattice from the binding energy in the structure by barium doping. Increased stability of the layered structure was observed by $I_{(006)}+I_{(102)}/I_{(101)}$(R-factor) ratio decrease. we expected that the electrochemical characteristics are improved. 23 mAh/g discharge capacity of barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01) electrode is higher than discharge capacity of $Li[Ni_{0.6}Co_{0.1}Mn_{0.3}]O_2$ due to decrease overvoltage. And, through the structural stability was confirmed that improved the cycle characteristics. We caused a reduction in charge transfer resistance between the electrolyte and the electrode was confirmed that the C-rate characteristics are improved.

Structure and Electrochemical Characterization of LiNi0.5Mn0.3Co0.2O2 as the Cathode Material Synthesized by Simple-combustion Method (단순 연소법으로 합성한 LiNi0.5Mn0.3Co0.2O2 양극 활물질의 구조 분석 및 전기화학적 특성 연구)

  • Cho, Sung-Woo;Ju, Jeong-Hun;Ryu, Seong-Hyeon;Ryu, Kawng-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.264-269
    • /
    • 2010
  • $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ active material was prepared by simple-combustion method and investigated as the cathode material for li-ion battery. The structural characterization was analyzed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM), respectively. The XRD patterns of $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ sample was indicated a phase of layered hexagonal structure. The size of particles has not uniform diameters ranging from 100 to 300 nm. The electrochemical performance of the $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ was measured by Cyclic Voltammetry and galvanostatics. The $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ shows the discharge capacity of ~162 mAh/g in the range of 2.8 to 4.3 V at the first cycle.

Electrochemical Properties of Al Doped Li(Ni1/3Co1/3Mn1/3-xAlx)O2, Cathode Materials (알루미늄이 첨가된 Li(Ni1/3Co1/3Mn1/3-xAlx)O2 양극활물질의 전기화학적 특성)

  • Kim Seon-Hye;Shim Kwang-Bo;Kim Chang-Sam
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.64-69
    • /
    • 2006
  • Cathode materials of Al-doped $Li(Ni_{1/3}Co_{1/3}Mn_{1/3-x}Al_x)O_2$ (x=0.0, 0.005, 0.01 0.05) for lithium ion batteries were synthesized with ultra-sonic spray pyrolysis method and single-step heat treatment. No secondary phases were found in all synthesized powders. The intensity ratio of $I_{003}\;to\;I_{104}$, however, slightly decreased and the particle size increased with the Al contents. The cells with bare, 0.5 and 1.0 at% Al-doped powders showed the initial discharge capacities of 182, 180 and $184mAhg^{-1}$ in a voltage range of $3.0\sim4.5V$ at 1C rate, and the capacity retentions of 81, 77 and 78% at the end of 30 cycles, respectively. But in the voltage range of $3.0\sim4.6V$, the Al-doping significantly enhanced the cycle stability. For example, the discharge capacity after 50 cycles was maintained to 70% in the 0.5 at% Al-doped sample compared to only 30% in no doped sample. The improvement of the cycle stability was thought to be due to $Mn^{3+}$ ion decrease as the Al doping from the XPS analysis results.

Ex-situ 7Li MAS NMR Study of Olivine Structured Material for Cathode of Lithium Ion Battery

  • Lee, Youngil;An, JiEun;Park, Seul-A;Song, HyeYeong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.2
    • /
    • pp.63-68
    • /
    • 2014
  • $^7Li$ nuclear magnetic resonance (NMR) spectra have been observed for $LiMPO_4$ (M = Fe, Mn) samples, as a promising cathode material of lithium ion battery. Observed $^7Li$ shifts of $LiFe_{1-x}Mn_xPO_4$ (x = 0, 0.6, 0.8, and 1) synthesized with solid-state reaction are compared with calculated $^7Li$ shift ranges based on the supertranferred hyperfine interaction of Li-O-M. Ex situ $^7Li$ NMR study of $LiFe_{0.4}Mn_{0.6}PO_4$ in different cut-off voltage for the first charge process is also performed to understand the relationship between $^7Li$ chemical shift and oxidation state of metals affected by delithiation process. The increment of oxidation state for metals makes to downfield shift of $^7Li$ by influencing the supertranferred hyperfine interaction.