• Title/Summary/Keyword: $LiCoO_{2}$

Search Result 700, Processing Time 0.029 seconds

Crystal Structures, Electrical Conductivities and Electrochemical Properties of LiCo1-XMgxO2(x=0.03) for Secondary Lithium Ion Batteries (리튬 2차 전지용 LiCo1-XMgxO2(x=0.03)의 결정구조, 전기전도도 및 전기화학적 특성)

  • Kim, Ho-Jin;Chung, Uoo-Chang;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.9 s.280
    • /
    • pp.602-606
    • /
    • 2005
  • [ $LiCoO_{2}$ ] is the most common cathode electrode materials in Lithium-ion batteries. $LiCo_{0.97}Mg_{0.03}O_2$ was synthesized by the solid-state reaction method. We investigated crystal structures, electrical conductivities and electrochemical properties. The crystal structure of $LiCo_{0.97}Mg_{0.03}O_2$ was analyzed by X-ray powder diffraction and Rietveld refinement. The material showed a single phase of a layered structure with the space group R-3m. The lattice parameter(a, c) of $LiCo_{0.97}Mg_{0.03}O_2$ was larger than that of $LiCoO_2$. The electrical conductivity of sintered samples was measured by the Van der Pauw method. The electrical conductivities of $LiCoO_2$ and $LiCo_{0.97}Mg_{0.03}O_2$ were $2.11{\times}10^{-4}\;S/cm$ and $2.41{\times}10^{-1}\;S/cm$ at room temperature, respectively. On the basis of the Hall effect analysis, the increase in electrical conductivities of $LiCo_{0.97}Mg_{0.03}O_2$ is believed due to the increased carrier concentrations, while the carrier mobility was almost invariant. The electrochemical performance was investigated by coin cell test. $LiCo_{0.97}Mg_{0.03}O_2$ showed improved cycling performance as compared with $LiCoO_2$.

Effects of Alkaline Additives on CO2 Removal by Li2ZrO3 (Li2ZrO3로 CO2 제거시 알칼리 첨가제 효과)

  • Park, Joo-Won;Kang, Dong-Hwan;Jo, Young-Do;Yoo, Kyung-Seun;Lee, Jae-Goo;Kim, Jae-Ho;Han, Choon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.535-539
    • /
    • 2006
  • Effects of alkaline additives on the $CO_2$ removal reaction have been investigated by a thermogravimetric analyzer. $Li_2ZrO_3$ was synthesized by soild reaction of $ZrO_2$ with $Li_2CO_3$ and then alkali chemicals were added to the synthesized $Li_2ZrO_3$ and then heat treatment was carried out. Addition of alkali chemicals enhanced the reactivity of $Li_2ZrO_3$ with the following order; $K_2CO_3>NaCl>LiCl>Na_2CO_3$, which were resulted from the formation of partially melted $Li_2CO_3$. SEM photographs showed the presence of melted state and the XRD results showed that the chemical states of added salts were not changed. Addition of NaCl caused the induction time of about 60 min at the initial reaction stage and the addition of $Na_2CO_3$ inhibited the decomposition of $Li_2CO_3$ at about $700{\sim}750^{\circ}C$.

$\textrm{CO}_2$ Gas Sensor Based on $\textrm{Li}_2\textrm{ZrO}_3$ System ($\textrm{Li}_2\textrm{ZrO}_3$ 계를 이용한 $\textrm{CO}_2$ 가스 센서)

  • Park, Jin-Seong;Kim, Si-Uk;Lee, Eun-Gu;Kim, Jae-Yeol;Lee, Hyeon-Gyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.896-899
    • /
    • 1999
  • A carbon dioxide gas sensor was studied as a function of temperature and $CO_2$concentration in the Li$_2$ZrO$_3$ system. Lithium zirconate(Li$_2$ZrO$_3$) was synthesized by the heat-treatment of zirconia(ZrO$_2$)and Lithium carbonate(Li$_2$CO$_3$). The specimens were prepared both as bulk disk, 10mm in diameter and 1.0mm thickness, and thick films on an alumina substrate. Lithium zirconate readily responded to $CO_2$concentration from 0.1% to 100% in the range of 45$0^{\circ}C$ to $650^{\circ}C$. The sensitivity to $CO_2$ was dependent on the measuring temperature. Lithium zirconate(Li$_2$ZrO$_3$) decomposes into Li$_2$CO$_3$ and ZrO$_2$after the reaction with $CO_2$in the range of 45$0^{\circ}C$ to $650^{\circ}C$. Li$_2$CO$_3$ changes into Li$_2$O and $CO_2$ above $650^{\circ}C$. The material showed difficulty with reversibility and recovery. The optimum temperature for the highest sensitivity is around 55$0^{\circ}C$.

  • PDF

Growth and structural properties of ZnO co-doped Er :$ LiNbO_3$ thin films by liquid phase epitaxy method (LPE법에 의한 ZnO co-doped Er :$ LiNbO_3$, 박막의 성장 및 구조적 특성)

  • 심장보;전원남;윤석규;윤대호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.27-30
    • /
    • 2002
  • ZnO co-doped Er:$LiNbO_3$ single crystal thin films have been grown on $LiNbO_3$ (001) substrate by liquid phase epitaxy (LPE) method. The melts of ZnO co-doped Er:$LiNbO_3$ was fixed $Er_2O_3$, concentration (1 mol%) and different ZnO concentrations 3 and 5 mol%. The crystallinity of ZnO co-doped Er :$LiNbO_3$ films became better than the $LiNbO_3$ substrate. At ZnO 5 mol% concentration, the surface of ZnO co-doped Er:$LiNbO_3$ film is affected by compressive stress along both the perpendicular and the parallel direction. Also the surface of ZnO 3 mol% co-doped Er:$LiNbO_3$film is smoother than the original $LiNbO_3$ substrate surface.

Synthesis and electrochemical properties of layered $Li[Ni_xCo_{1-2x}Mn_x]O_2$ materials for lithium secondary batteries prepared by mechanical alloying (기계적 합금법을 이용한 리튬 2차 전지용 층상 양극물질 $Li[Ni_xCo_{1-2x}Mn_x]O_2$ 의 합성 및 전기화학적 특성에 관한 연구)

  • 박상호;신선식;선양국
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.16-16
    • /
    • 2002
  • The presently commercialized lithium-ion batteries use layer structured LiCoO₂ cathodes. Because of the high cost and toxicity of cobalt, an intensive search for new cathode materials has been underway in recent years. Recently, a concept of a one-to-one solid state mixture of LiNO₂ and LiMnO₂, i.e., Li[Ni/sub 0.5/Mn/sub 0.5/]O₂, was adopted by Ohzuku and Makimura to overcome the disadvantage of LiNiO₂ and LiMnO₂. Li[Ni/sub 0.5/Mn/sub 0.5/]O₂ has the -NaFeO₂ structure, which is characteristic of the layered LiCoO₂ and LiNiO₂ structures and shows excellent cycleability with no indication of spinel formation during electrochemical cycling. Layered Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials with high homogeneity and crystallinity were synthesized using a mechanical alloying method. The Li[Ni/sub 0.475/Co/sub 0.05/Mn/sub 0.475/]O₂ electrode delivers a high discharge capacity of 187 mAh/g between 2.8 and 4.6 V at a high current density of 0.3 mA/㎠(30 mA/g) with excellent cycleability. The charge/discharge and differential capacity vs. voltage studies of the Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂ (x = 0.5 and 0.475) materials showed only one redox peak up to 50 cycles, which indicates that structural phase transitions are not occurred during electrochemical cycling. The magnitude of the diffusion coefficients of lithium ions for Li[Ni/sub x/Co/sub 1-2x/Mn/sub x/]O₂(x = 0.5 and 0.475) are around 10/sup -9/ ㎠/s measured by the galvanostatic intermittent titration technique (GITT).

  • PDF

Synthesis and Characteristics of LiCoO2 Powders Prepared by SHS Process (자전연소합성법을 이용한 리튬이차전지용 양극활물질 LiCoO2의 제조 및 특성)

  • ;;;Hayk H. Nersisyan
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.388-394
    • /
    • 2004
  • LiCoO$_2$ as the cathode activity material for lithium secondary battery was prepared from a homogeneously mixed powder of LiNO$_3$/Co by SHS process under argon gas. The characteristics of powder including electrochemical properties were investigated according to various reaction conditions. The reaction temperature/velocity and the size of LiCoO$_2$ were controlled by Li/Co molar ratio and a cooling rate of the specimen, respectively. The maximum discharge capacity was 145 mAh/g on 1.05 Li/Co molar ratio and the relatively stable cycling characteristic with 6.4% of capacity fading was obtained after 10th charging-discharging test.

Effect of $Al_2O_3$ coating on the surface of $LiCoO_2$ for the cathode of lithium ion battery ($Al_2O_3$로 코팅된 $LiCoO_2$ 입자로 제조된 리튬 이온 전지의 특성에 대한 연구)

  • 오승석;변동진;이중기;조병원
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.226-226
    • /
    • 2003
  • The Commercial LiCoO$_2$ particles, which were 7.7${\mu}{\textrm}{m}$ in average diameter, were coated with $Al_2$O$_3$ by a gas suspension spray coating method. The coating amount of $Al_2$O$_3$ on the surface of LiCoO$_2$ was varied from 0.1 to 2 wt.% and compared their electrochemical characteristics with those of bare LiCoO$_2$. $Al_2$O$_3$ coating on the surface of LiCoO$_2$ increased surface area and electrical conductivity, and showed the better cycle and thermal stability even at the higher voltage. The observed optimum A1$_2$O$_3$ coating amount that exhibited the highest capacity retention was 0.2 wt.%.

  • PDF

Electrochemical Properties of LiCoO2 Prepared by Mechanochemical Process (Mechanochemical Process로 제조된 LiCoO2의 전기화학적 특성)

  • Cho, Byung-Won;Lee, Joong Kee;Lee, Jae-Ryong;Kim, Su-Jin;Lee, Kwan-Young;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.69-75
    • /
    • 2008
  • Discharge capacity of $LiCoO_2$ in preparation by mechanochemical process decreased remarkably over 4.3V. However, Zr coating of $LiCoO_2$ showed very stable electrochemical properties up to 4.5V. Zr coating of $LiCoO_2$ in this experiment showed the discharge capacity of 197 mAh/g at 3.0-4.5V, and it maintained 96% of the initial discharge capacity after 50 cycle of charge/discharge.

Selective Leaching of $LiCoO_2$in an Oxalic Acid Solution (Oxalic acid용액에서 $LiCoO_2$의 선택침출)

  • 이철경;양동효;김낙형
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.10-16
    • /
    • 2002
  • In the leaching of $LiCoO_2$with a strong acid such as sulfuric and nitric acid, an additional step was needed to recover cobalt and lithium separately from spent lithium ion batteries (LIBs). The leaching of $LiCoO_2$in an oxalic acid solution was investigated to recover cobalt selectively using a low solubility of cobalt oxalate at low pH. Leaching efficiency of 95% of lithium and less than 1% of cobalt were obtained when pure $LiCoO_2$powder was leached in 3M oxalic acid at $80^{\circ}C$ and 50 g/L pulpdensity. Under the above leaching conditions, complete dissolution of lithium was accomplished with mere 0.25% of cobalt in the solution when the cathodic active material collected from spent LIBs was employed. The lithium in the leaching solution can be recovered as a form of carbonate or hydroxide depending on the addition of $Na_2$$CO_3$or LiOH.

Effect of pH on the Synthesis of $LiCoO_2$ with Malonic Acid and Its Charge/Discharge Behavior for a Lithium Secondary Battery

  • Kim, Do Hun;Jeong, Yu Deok;Kim, Sang Pil;Sim, Un Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.11
    • /
    • pp.1125-1132
    • /
    • 2000
  • The pH effect of the precursor solution on the preparation of $LiCoO_2$ by a solution phase reaction containing malonic acid was carried out. Layered $LiCoO_2$ powders were obtained with the precursors prepared at the different pHs (4, 7, and 9) and heat-treated at $700^{\circ}C(LiCoO_2-700)$ or $850^{\circ}C(LiCoO_2-850)$ in air. pHs of the media for precursor synthesis affects the charge/discharge and electrochemical properties of the $LiCoO_2electrodes.$ Upon irrespective of pH of the precursor media, X-ray diffraction spectra recorded for $LiCoO_2-850$ powder showed higher peak intensity ratio of I(003)/I(104) than that of $LiCoO_2-700$, since the better crystallization of the former crystallized better. However, $LiCoO_2$ synthesized at pH 4 displayed an abnormal higher intensity ratio of I(003)/I(104) than those synthesized at pH 7 and 9. The surface morphology of the $LiCoO_2-850$ powders was rougher and more irregular than that of $LiCoO_2-700$ made from the precursor synthesized at pH 7 and 9. The $LiCoO_2electrodes$ prepared with the precursors synthesized at pH 7 and 9 showed a better electrochemical and charge/discharge characteristics. From the AC impedance spectroscopic experiments for the electrode made from the precursor prepared in pH 7, the chemical diffusivity of Li ions (DLi+) in $Li0.58CoO_2determined$ was 2.7 ${\times}$10-8 $cm^2s-1$. A cell composed of the $LiCoO_2-700$ cathode prepared in pH 7 with Lithium metal anode reveals an initial discharge specific capacity of 119.8 mAhg-1 at a current density of 10.0 mAg-1 between 3.5 V and 4.3 V. The full-cell composed with $LiCoO_2-700$ cathode prepared in pH 7 and the Mesocarbon Pitch-based Carbon Fiber (MPCF) anode separated by a Cellgard 2400 membrane showed a good cycleability. In addition, it was operated over 100 charge/discharge cycles and displayed an average reversible capacity of nearly 130 mAhg-1.