• Title/Summary/Keyword: $LiBr-H_2O$ Solution

Search Result 62, Processing Time 0.025 seconds

Analysis of Absorption Refrigeration Cycles to Utilize Treated Sewage (하수처리수이용 흡수식냉동사이클의 해석)

  • Lee, Y.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.2
    • /
    • pp.288-298
    • /
    • 1996
  • The gas-fired absorption refrigeration system to utilize treated sewage is available for environmental protection and energy conservation. Simulation analysis on the double-effect absorption refrigeration cycles with parallel or series flow type has been performed. The working fluid is Lithium Bromide and water solution. The main purpose of this study is evaluating the possibilities of effective utilization of treated sewage as a cooling water for the absorber and condenser. The efficiency of a couple of cycles has been studied and simulation results show that higher coefficient of performance could be obtained for parallel flow type. The other purpose of the present study is to determine the optimum designs and operating conditions based on the operating constraints and the coefficent of performance in the paralledl flow type.

  • PDF

Analysis of Heat and Mass Transfer on Helical Absorber (헬리컬 흡수기의 흡수 열물질전달 해석)

  • Gwon, O-Gyeong;Im, Jong-Geuk;Yun, Jeong-In;Kim, Seon-Chang;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1428-1436
    • /
    • 2000
  • The absorption of vapor involves simultaneous heat and mass transfer in the vapor/liquid system. In this paper, a numerical study for vapor absorption process into LIBr-H$_2$O solution film flowing over helical absorber has been carried out. Axisymmetric cylindrical coordinate system was adopted to model the helical tube and the transport equations were solved by the finite volume method. The effects of operating conditions, such as the cooling water temperature. the system pressure, the film Reynolds number and the solution inlet concentration have been investigated in view of the absorption mass flux and the total absorption mass flux and the total absorption rate. The results for the temperature and concentration profiles, as well as the local absorption mass flux at the helical absorber are presented. It is shown that solution inlet concentration affected other than operation conditions for a mass flux.

A Study on the COP Improvement of Absorption Chillers by Recovering Heat from the Condenser (응축기 배열회수에 의한 흡수식 냉동기의 고효율화에 관한 연구)

  • Park, Chan-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.9
    • /
    • pp.738-744
    • /
    • 2006
  • In order to utilize the condensation heat of refrigerants in condenser on the absorption chiller system, the solution cooled condenser (SCC) was proposed using the weak solution of absorber as a cooling medium. The increase of COP with the increase of UA of the solution cooled condenser was approximately 0.009 in maximum with single effect one, and is about maximum 0.008 in occasion of double effect one with series flow compared to that without. In the case of heat exchanger, effectiveness is about 0.85, it's increments are 0.008 and 0.0072, respectively. And solution cooled condenser is more effective device in the single effect absorption system than double effect system for the principle of operation. On the other hand, as the solution split ratio increases when the value of UA is fixed, COP is increased and as the solution split ratio increases when the value of UA is fixed, COP is increased. If the flow rate of cooling water or the value of UA is reduced in order to increases the heat recovery of solution cooled condenser, heat recovery of solution cooled condenser is increased a little but COP is decreased as the system pressure is increased.

Thermal Analysis and Optimum Design of Water-Cooled, Series-Flow Type, Double-Effect Absorption Heat Pump (수냉형 직렬방식 2중효용 흡수식 냉방기의 열해석과 최적 설계)

  • Oh, M.D.;Kim, Y.L.;Kim, S.C.;Kim, Y.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.332-341
    • /
    • 1992
  • An absorption heat pump cycle has been modeled and simulated to analyze the system performance of water-cooled, series-flow, double-effect absorption heat pump, which can be applied to a direct gas fired cooling system with the medium range of cooling capacity (15RT level). Effect of absorption cooling system parameters, such as concentration difference, inlet temperature of cooling water, 1st generator temperature, leaving temperature differences of condenser and evaporator and efficiency of solution heat exchanger, has been investigated in the view of system cooling performance.

  • PDF

Performance Experiment of Generator for Household Absorption Chiller and Heater (가정용 흡수식 냉난방기 개발을 위한 재생기 성능실험)

  • Yu, Sun-Il;Kwon, Oh-Kyung;Yoon, Jung-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1347-1354
    • /
    • 1999
  • Recently, the markets of the air conditioner are enlarging. The market size will reach 2.0 billion won in 2000. Electric heat pumps have been utilized as main residential air conditioners. especially in Korea. They cause a surge up electric power demand during summer. Moreover, the use of HCFCs and HFCs causes serious problem to the global environment such as global warming and ozone layer destruction. Absorption chiller and heater could solve such problems. It was built and tested for analyzing the performance of the generator for absorption chiller and heater. Experiment was done with a high temperature generator, a low temperature generator, heat exchangers, a condenser and a solution tank. It was tested that the double effect series flow cycle with two kinds of solution cycle. Solution cycle B showed better than solution cycle A. Two kinds of heat exchanger were used, where one's heat transfer area is bigger than the other. Bigger one increased a little performance of absorption chiller and heater. But it was not economical. From this study, we got that the coefficient of performance(COP) is 0.82 and the capacity is 7.24 kW for an absorption chiller and heater.

A study on the Characteristics of the High Efficiency absorption Chiller by Heat Recovering from Condenser (응축기 배열 회수에 의한 흡수식 냉동기의 고효율화에 관한 연구)

  • Park, Chan-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.46-51
    • /
    • 2006
  • In order to utilize the refrigerants condensation heat of condenser on the absorption chiller system, the solution cooling condenser(SCC) were proposed, which weak solution of absorber outlet use as a cooling water. As the UA of the solution cooling condenser increased, increasement of COP is about maximum 0.09 in occasion of single effect and is about maximum 0.08 in occasion of double effect series flow. In the case of heat exchanger efficiency is about 0.85, it's increments are 0.08 and 0.072, each. And solution cooling condenser is a more effective device in the single effect absorption system more than double effect system for the principle of operation. In order to increases the heat of solution cooling condenser, if reduce the flow rate of cooling water or the value of UA, it makes COP increase a little, but it brought COP decrease because of increasing the pressure of system.

  • PDF

Performance analysis for the Characteristics of Double/ Single Effect Hybrid type Absorption Chiller (일중/이중효용 하이브리드 타입 흡수식 냉동기 성능 특성에 관한 수치적 연구)

  • You, Da-Young;Song, Tae-Min;Lee, Jung-Byoung;Kim, Hyung-Jin;Im, Ick-Tae;Moon, Sang-Done;Park, Chan-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.272-278
    • /
    • 2009
  • The characteristics of hybrid type absorption chiller are studied numerically to use a waste hot water effectively. In the case of the full load, the concentration and temperature of LiBr solution are increase about $11^{\circ}C$, 1.3% respectively at the single effect generator by hot water. As a result, the heat of the high temperature generator are decrease, so the energy can be saved. As the partial load decreased the consumption ratio of fuels are decreased and the reduction ratio of fuels are increased. The variation of COP with the inlet temperature of hot water is higher than that of the flow rate of hot water. The effect of mean temperature difference with solution and hot water of the generator are higher that of flow rate of hot water, it can effect on COP which is sensitive to heat of generator.

  • PDF

Numerical Analysis of Vertical Plate Absorber for Optimal Design

  • Yoon, Jung-In;Moon, Choon-Geun;Phan, Thanh-Tong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.252-262
    • /
    • 2004
  • A model of simultaneous heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber. which was considered to the change of refrigerant vapor pressure along the plate width direction. was developed to evaluate the compactness of plate absorber and supply basis data for optimal design of plate absorber. The effects of plate interval as well as the effect of capacity for one piece of plate absorber on plate absorber size such as plate height. plate heating area and plate absorber volume have been investigated. It is confirmed that there is exist an optimal plate interval minimizing plate absorber volume. And the smaller capacity for one piece of plate absorber. the smaller plate absorber volume is obtained.

Synthesis and Solution Properties of Zwitterionic Copolymer of Acrylamide with 3-[(2-Acrylamido)dimethylammonio]propanesulfonate

  • Xiao, Hui;Hu, Jing;Jin, Shuailin;Li, Rui Hai
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2616-2622
    • /
    • 2013
  • A novel zwitterionic monomer 3-[(2-acrylamido)dimethylammonio]propanesulfonate (DMADAS) was designed and synthesized in this study. Then it was polymerized with acrylamide (AM) by free radical polymerization in 0.5 mol/L NaCl solution with ammonium persulfate ($(NH_4)_2S_2O_8$) and sodium sulfate ($NaHSO_3$) as initiator. The structure and composition of DMADAS and acrylamide-3-[(2-acrylamido)-dimethylammonio]propanesulfonate copolymer (P-AM-DMADAS) were characterized by FT-IR spectroscopy, $^1H$ NMR and elemental analyses. Isoelectric point (IEP) of P-AM-DMADAS was tested by nanoparticle size and potential analyzer. Solution properties of copolymer were studied by reduced viscosity. Antipolyelectrolyte behavior was observed and was found to be enhanced with increasing DMADAS content in copolymer. The results showed that the viscosity of P-AM-DMADAS is 5.472 dl/g in pure water. Electrolyte was added, which weakened the mutual attraction between sulfonic acid group and quaternary ammonium group. The conformation became loose, which led to the increase of reduced viscosity. The ability of monovalent and divalent cation influencing the viscosity of zwitterionic copolymer obeyed the following sequence: $Li^+$ < $Na^+$ < $K^+$, $Mg^{2+}$ < $Ca^{2+}$ < $Ba^{2+}$, and that of anion is in the order: $Cl^-$ < $Br^-$ < $I^-$, $CO{_3}^{2-}$ > $SO{_3}^{2-}{\approx}SO{_4}^{2-}$.

Performance analysis for the Characteristics of Double Stage Evaporator/Absorber for Large temperature Difference Absorption System (흡수식 대온도차 시스템에서 2단 증발/흡수기의 성능 특성에 관한 수치적 연구)

  • Park, Chan-Woo;Kang, Yong-Tae;Im, Ick-Tae;Moon, Sang-Done
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.304-308
    • /
    • 2008
  • The optimal design of two stage evaporation & absorption system which is related to the large temperature difference system was investigated numerically in the absorption refrigeration system. The concentrations at inlet & oulet of absorber are 62.9% and 56.9%, but in two stage absorption system the values are 62.2% and 56.2%. Therefore strong solution & weak solution became diluted than the standard value. The amount of weak solution circulation can be reduced in absorption refrigeration system, and the sensible heat load is more reduced to enhance the COP of system. As UAR is increased, COP becomes larger, and this means the role of top section is more important than bottom section in two stage evaporation & absorption system. But the increase of COP becomes slower at 0.7 of UAR ratio. The performance of Type2 is higher than Type1 in COP with the flow direction of cooling waters. This phenomena is due to the active absorption of vapor -absorption & lower temp. cooling water is more effective. The pressure at bottom section becomes higher & that at top section becomes lower and therefore the circulation rate can be diminished more.

  • PDF