• Title/Summary/Keyword: $Li-O_2$ batteries

Search Result 347, Processing Time 0.028 seconds

Material Life Cycle Assessment of Graphene 2wt% Added to Li1.6Ni0.35Mn0.65O2 Half-Cell (그래핀 2wt%를 첨가한 Li1.6Ni0.35Mn0.65O2 Half-Cell의 물질 전 과정 평가)

  • CHO, KYOUNG-WON;LEE, YOUNG-HWAN;HAN, JEONG-HEUM;YU, JAE-SEON;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.1
    • /
    • pp.132-137
    • /
    • 2020
  • Lithium secondary batteries have become an important power source for portable electronic devices such as cellular phones, laptop computers. Presently, commercialized lithium-ion batteries use a LiCoO2 cathode. However, due to the high cost and environmental problems resulting from cobalt, an intensive search for new electrode materials is being actively conducted. Recently, solid solution LiMn1-xNixO2 have become attractive because of high capacity and enhanced safety at high voltages over 4.5 V. The Li1.6Ni0.35Mn0.65O2 compounds were conventionally prepared by a sol-gel method, which can produce the layered Li-Ni-Mn-O compounds with a high homogeneity. And by adding a graphene 2wt% the first charge-discharge voltage profiles was increased over Li1.6Ni0.35Mn0.65O2 compound. Also, the variation s of the discharge capacities with cycling showed a higher capacity retention rater. In this study, material lifecycle evaluation was performed to analyze the environmental impact characteristics of Li1.6Ni0.35Mn0.65O2 & graphene 2wt% half-cell manufacturing process. The software of material life cycle assessment was Gabi. Through this, environmental impact assessment was performed for each process. The environmental loads induced by Li1.6Ni0.35Mn0.65O2 & graphene 2wt% synthesis process were quantified and analyzed, and the results showed that the amount of power had the greatest impact on the environment.

Synthesis and Electrochemical Characteristics of Li0.7[Ni0.05Mn0.95]O2 as a Positive Material for Rechargeable Lithium Batteries

  • Shin, Sun-Sik;Kim, Dong-Won;Sun, Yang-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.679-682
    • /
    • 2002
  • Layered Na0.7[Ni0.05Mn0.95]O2 compounds have been synthesized by a sol-gel method, using glycolic acid as a chelating agent. Na0.7[Ni0.05Mn0.95]O2 precursors w ere used to prepare layered lithium manganese oxides by ion exchange for Na by Li, using LiBr in hexanol. Powder X-ray diffraction shows the layered Na0.7[Ni0.05Mn0.95]O2 has an O3 type structure, which exhibits a large reversible capacity of approximately 190 mA h g-1 in the 2.4-4.5 V range. Na0.7[Ni0.05Mn0.95]O2 powders undergo transformation to spinel during cycling.

Fabrication of Flake-like LiCoO2 Nanopowders using Electrospinning (전기 방사법을 이용한 플레이크형 LiCoO2 나노 분말의 제조)

  • Koo, Bon-Ryul;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.108-113
    • /
    • 2014
  • Flake-like $LiCoO_2$ nanopowders were fabricated using electrospinning. To investigate their formation mechanism, field-emssion scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were carried out. Among various parameters of electrospinning, we controlled the molar concentration of the precursor and the PVP polymer. When the molar concentration of lithium and cobalt was 0.45 M, the morphology of $LiCoO_2$ nanopowders was irregular and round. For 1.27 M molar concentration, the $LiCoO_2$ nanopowders formed with flake-like morphology. For the PVP polymer, the molar concentration was set to 0.011 mM, 0.026 mM, and 0.043 mM. Irregular $LiCoO_2$ nanopowders were formed at low concentration (0.011 mM), while flake-like $LiCoO_2$ were formed at high concentration (0.026 mM and 0.043 mM). Thus, optimized molar concentration of the precursor and the PVP polymer may be related to the successful formation of flake-like $LiCoO_2$ nanopowders. As a results, the synthesized $LiCoO_2$ nanopowder can be used as the electrode material of Li-ion batteries.

Study of the Electrochemical Properties of Li4Ti5O12 Doped with Ba and Sr Anodes for Lithium-Ion Secondary Batteries

  • Choi, Byung-Hyun;Lee, Dae-Jin;Ji, Mi-Jung;Kwon, Young-Jin;Park, Sung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.638-642
    • /
    • 2010
  • The spinel material $Li_4Ti_5O_{12}$ has attracted considerable attention as an anode electrode material for many battery applications owing to its light weight and high energy density. However, the real capacity of $Li_4Ti_5O_{12}$ powder as determined by the solid-state method is lower than the ideal capacity. In this study, we investigated the effect of the dopants in M-doped spinel $Ba_xLi_{4-2x}Ti_5O_{12}$(x=0.005, 0.05, 0.1) powders prepared by the solid-state reaction method and used as the anode material in lithiumion batteries. The results confirmed the effect of the Ba and Sr dopants on the powder properties of the spinel $Li_4Ti_5O_{12}$, which exhibited a pure spinel structure without any secondary phase in its XRD pattern. Moreover, the electrochemical properties of the spinel M-LTO materials were investigated using a half cell. The electrochemical data show that cells with anodes made of undoped $Li_4Ti_5O_{12}$ and Ba- and Sr-doped $Li_4Ti_5O_{12}$ have discharge capacities of 97, 130, and 112 mAh/g, respectively, at the first cycle. Moreover, the Ba- and Sr-doped spinel $Li_4Ti_5O_{12}$ demonstrated good properties in the mid-voltage range at 1.55 V, showing stable cyclic voltammogram properties which surpassed those of the same material without Ba or Sr at 1 C after 100 cycles.

Structural and Electrochemical Properties of Spin Coated LiCoO2 Cathode Thin Film in Lithium Secondary Batteries (스핀코팅법에 의한 리튬 2차전지용 산화물 양전극 LiCoO2 박막의 구조 및 전기화학적 특성에 대한 연구)

  • Gang, Seong-Gu;Yu, Gi-Cheon
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.243-246
    • /
    • 2006
  • The LiCoO2 thin films were prepared on the Pt/Ti/SiO2/Si substrate by spin coating using citrate sol. The citrate sol was spin-coated on substrate and dried at 380oC for 15 min. to evaporate the solvents and remove the organic materials. The as-deposited films were annealed at 750oC for 10 min. in air for crystallization. The X-ray diffraction patterns for the film have been indexed hexagonal system with space group R3m. The active area of LiCoO2 films for electrochemical test was about 11cm2. A Li foil and 1M LiClO4 in propylene carbonate(PC) and ethylene carbonate(EC) (1:1)were used as an anode and an electrolyte, respectively. The galvanostatic charge-discharge test was carried out at constant current density ranging from 5 A/cm2 in the voltage window between 4.2 and 3.0 V. The first discharge capacity of the film is 0.35Ah/cm2-m. The cycling behavior of the LiCoO2 film is also reported.

Fabrication and Electrochemical Characterization of All Solid State Rechargeable Li-Mn Oxide Batteries (리튬-망간 산화물을 이용한 전고상 이차 전지의 제작 및 전기화학적 특성)

  • Park, Young-Sin;Sin, Jin-Wook;Lee, Byung-Il;Joo, Seung-Ki
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.323-327
    • /
    • 1998
  • All solid state lithium based rechargeable batteries were fabricated in a cell structure of Li/PEO-$LiCIO_4$-PC /$LIMn_2O_4$$LIMn_2O_4$ thin films were prepared by RF magnetron sputtering and the spinel structure could be obtained by Rapid Thermal Annealing (RT A) process at the temperature of around 750$750^{\circ}C$ . Room temperature cycling of this cell showed a nearly constant cell potential of 4 V( us. Li) and good reversibility.

  • PDF