• Title/Summary/Keyword: $LabView^{(R)}$

Search Result 62, Processing Time 0.029 seconds

Dark Channel Prior을 이용한 LabVIEW 기반의 동영상 안개제거 (A LabVIEW-based Video Dehazing using Dark Channel Prior)

  • 노창수;김연교;정의필
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.101-107
    • /
    • 2017
  • LabVIEW coding for video dehazing was developed. The dark channel prior proposed by K. He was applied to remove fog based on a single image, and K. B. Gibson's median dark channel prior was applied, and implemented in LabVIEW. In other words, we improved the image processing speed by converting the existing fog removal algorithm, dark channel prior, to the LabVIEW system. As a result, we have developed a real-time fog removal system that can be commercialized. Although the existing algorithm has been utilized, since the performance has been verified real - time, it will be highly applicable in academic and industrial fields. In addition, fog removal is performed not only in the entire image but also in the selected area of the partial region. As an application example, we have developed a system that acquires clear video from the long distance by connecting a laptop equipped with LabVIEW SW that was developed in this paper to a 100~300 times zoom telescope.

LabView기반 6축 수직 다관절 로봇의 파라미터 스케쥴링 프로그래밍에 관한 연구 (Application of LabView-Based Parameter Scheduling Programming for a 6-Axis Articulated Robot)

  • 김성빈;정원지;김효곤
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.327-333
    • /
    • 2015
  • As industrial robots come into wider use, their control techniques are being developed along with enhancements in their performance. Specially, the dynamic performance of a 6-axis articulated industrial robot is greatly changed according to the position and orientation of the robot. This means that the PI parameter tuning of the robot and orientation of the robot. This mconsidering the dynamic characteristics of robot mechanism. In this study, $LabView^{(R)}$ programming was applied to automatically conduct parameter scheduling for various robot motions. Using forward and inverse kinematics of RS2, we can divide the working envelope of RS2 into 24 subspaces. We then conduct the gain-tuning according to each subspace. Finally, we program the actual gain scheduling, in which the optimized gain-tuning for each subspace to be passed should be changed for various robot motions using $LabView^{(R)}$.

LabVIEW®를 이용한 6축 수직 다관절 로봇의 퍼지 로직이 적용된 게인 스케줄링 프로그래밍에 관한 연구 (A Study on Gain Scheduling Programming with the Fuzzy Logic Controller of a 6-axis Articulated Robot using LabVIEW®)

  • 강석정;정원지;박승규;노성훈
    • 한국기계가공학회지
    • /
    • 제16권4호
    • /
    • pp.113-118
    • /
    • 2017
  • As the demand for industrial robots and Automated Guided Vehicles (AGVs) increases, higher performance is also required from them. Fuzzy controllers, as part of an intelligent control system, are a direct control method that leverages human knowledge and experience to easily control highly nonlinear, uncertain, and complex systems. This paper uses a $LabVIEW^{(R)}-based$ fuzzy controller with gain scheduling to demonstrate better performance than one could obtain with a fuzzy controller alone. First, the work area was set based on forward kinematics and inverse kinematics programs. Next, $LabVIEW^{(R)}$ was used to configure the fuzzy controller and perform the gain scheduling. Finally, the proposed fuzzy gain scheduling controller was compared with to controllers without gain scheduling.

LabVIEW® 기반 6축 수직 다관절 로봇(RS2)의 이종 모션 블랜딩 연구 (Implementation of LabVIEW®-based Joint-Linear Motion Blending on a Lab-manufactured 6-Axis Articulated Robot (RS2))

  • 이동선;정원지;장준호;김만수
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.318-323
    • /
    • 2013
  • For fast and accurate motion of 6-axis articulated robot, more noble motion control strategy is needed. In general, the movement strategy of industrial robots can be divided into two kinds, PTP (Point to Point) and CP (Continuous Path). Recently, industrial robots which should be co-worked with machine tools are increasingly needed for performing various jobs, as well as simple handling or welding. Therefore, in order to cope with high-speed handling of the cooperation of industrial robots with machine tools or other devices, CP should be implemented so as to reduce vibration and noise, as well as decreasing operation time. This paper will realize CP motion (especially joint-linear) blending in 3-dimensional space for a 6-axis articulated (lab-manufactured) robot (called as "RS2") by using LabVIEW$^{(R)}$ (6) programming, based on a parametric interpolation. Another small contribution of this paper is the proposal of motion blending simulation technique based on Recurdyn$^{(R)}$ V7 and Solidworks$^{(R)}$, in order to figure out whether the joint-linear blending motion can generate the stable motion of robot in the sense of velocity magnitude at the end-effector of robot or not. In order to evaluate the performance of joint-linear motion blending, simple PTP (i.e., linear-linear) is also physically implemented on RS2. The implementation results of joint-linear motion blending and PTP are compared in terms of vibration magnitude and travel time by using the vibration testing equipment of Medallion of Zonic$^{(R)}$. It can be confirmed verified that the vibration peak of joint-linear motion blending has been reduced to 1/10, compared to that of PTP.

LabVIEW 기반 6축 수직다관절 로봇의 게인스케쥴링 구현 연구 (Gain Scheduling in a 6-Axis Articulated Robot Based on LabVIEW)

  • 김만수;정원지;김성빈
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.318-324
    • /
    • 2014
  • Recent years have witnessed a growing demand for a wide variety of high-performance industrial robots. In this paper, for accurate gain tuning of a 6-axis articulated industrial robot with reduced noise, a program routine for a dynamic signal analyzer (DSA) using the frequency response method will be programmed using $LabVIEW^{(R)}$. Then, robot transfer functions can be obtained experimentally using the frequency response method with the DSA program. Data from the robot transfer functions are transformed into Bode plots, based on which an optimal gain tuning will be executed. Gain tuning can enhance the response quality of the output signal for a given input signal during real-time control of the robot. The effectiveness of our proposed technique will be verified by implementation with a (lab-manufactured) 6-axis articulated industrial robot (hereinafter called "RS2") and comparison with the zero position gain tuning, as well as other positions.

쿼터니언을 이용한 6축 로봇 방위보간법에 관한 연구 (A Study on Orientations Interpolation of 6-Axis Articulated Robot using Quaternion)

  • 안진수;정원지
    • 한국생산제조학회지
    • /
    • 제20권6호
    • /
    • pp.778-784
    • /
    • 2011
  • This paper presents the study on orientations interpolation of 6-axis articulated robot using quaternion. In this paper, we propose a control algorithm between given two orientations of 6-axis articulated robot by using a quaternion with spherical linear interpolation. In order to study the quaternion interpolation, We created Inverse kinematics program and Interpolation program using LabVIE$^{(R)}$. The rotation angle of each axis were calculated using both euler orientations interpolation program and quaternion orientations interpolation program. The proposed control algorithm is shown to be effective in terms of motor angles and torques when compared to a conventional Euler angle interpolation, by using both LabVIEW$^{(R)}$ and RecurDyn$^{(R)}$.

In-Use Compliance Emission Testing Analysis Applied in LabVIEW for Engineers

  • Mikhail, Ghaly-Rezk;Lee, Chun-Beom;Choi, Seong-Joo
    • 실천공학교육논문지
    • /
    • 제6권2호
    • /
    • pp.127-134
    • /
    • 2014
  • Analyzing test data of a vehicle for evaluating its emission performance is an essential process in automotive development field, yet it is intricate and tedious task. In addition, clear understanding and care are required when the analysis process is carried out. Computer software solutions significantly reduce the time and the effort for such analysis. Developing a computer routine to analyze the emission data in a vehicle test demands a complete understanding of the emissions analysis and its related details. In this paper, the principals to develop a LabVIEW analysis routine (VI) are introduced helping automotive engineers comprehend the emission analysis process of a vehicle test data and instruct them to develop similar routines for such analysis.

시변 연속적 편향 비례항법 유도법칙을 이용한 이동표적의 충돌각 제어 (Impact Angle Control with Time Varying Continuous Biased PNG for Non-maneuvering Target)

  • 박장성;권혁훈;박상혁;김윤영;박봉균
    • 한국항공우주학회지
    • /
    • 제46권9호
    • /
    • pp.742-751
    • /
    • 2018
  • 본 논문은 지대지 교전상황에서 유도탄 탐색기의 Field-of-View(FOV)와 가속도 제한을 고려하여 충돌각을 제어하는 시변 편향 비례항법 유도법칙(Time Varying Biased Proportional Navigation Guidance Law)을 제안하고 있다. 제안한 유도법칙은 FOV 제한을 고려하여 3단계로 구성이 되는데 각 단계에서 편향이 가속도에 직접적인 영향을 미치기 때문에 편향을 생성하는데 있어서 단계가 넘어갈 때 전 단계의 마지막 편향이 다음 단계의 시작 편향이 되도록 하였다. 또한, 교전 상황과 물리적 구속조건을 고려하여 충돌각 도달 여부를 판단하는 로직 또한 설명하고 있다.

LabVIEW에 의한 태양광 연계시의 전력품질 특성에 관한 연구 (A Study on the Power Quality Analysis for Photovoltaic System Using the LabVIEW S/W Systems)

  • 송석환;김병목;박오성;허상운;노대석
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 춘계학술발표논문집 1부
    • /
    • pp.56-59
    • /
    • 2010
  • 태양광과 풍력과 같은 분산전원이 배전계통에 연계되어 운용되는 경우, 수용가의 규정전압인 220${\pm}$6%(207[V]~233[V])를 벗어나는 현상이 발생할 수 있다. 본 논문에서는 태양광이 연계되는 위치에 따라 변동하는 선로임피던스(R${\pm}$jX)에 의하여 발생하는 순시 전압상승 및 전압강하에 의한 전력품질[과전압/저전압] 저하 현상을 LabVIEW S/W를 이용하여 확인하였으며, 이에 따른 문제점을 분석하고 그 해결책을 제시하였다.

  • PDF

고속 스핀들의 변위측정 시스템 개발 (Development of a Measurement System for High-Speed Spindle Displacement)

  • 김효곤;정원지;주지훈;조영덕
    • 한국공작기계학회논문집
    • /
    • 제17권6호
    • /
    • pp.8-13
    • /
    • 2008
  • At present many research projects on high-speed spindles are being conducted. These projects require a measurement technique which includes heat expansion, vibration and displacement measurement according to angular velocity. This paper presents the development of a measurement system for high-speed spindle displacement. The measurement system is based on $LabView^{(R)}$ and features the following sensors: optical sensor which reacts to the position of a marker on the spindle and enables two Laser Displacement Sensors(LDS). These Laser Displacement Sensors send their data to a DAQ(Data Acquisition Device). It is important that the delay time caused by the response times of the sensors as well as the sampling rate of the DAQ is considered because the spindle revolves at very high speeds.