• Title/Summary/Keyword: $K_0$-consolidated

Search Result 109, Processing Time 0.026 seconds

Liquefaction Resistance of Gravel-Sand Mixtures (자갈-모래 혼합토의 액상화 거동)

  • Kim, Bang-Sig;Kang, Byung-Hee;Yoon, Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.47-56
    • /
    • 2007
  • In this research, the effects of the gravel content on the liquefaction behavior for both of the isotropically and $K_0-anisotropically$ consolidated gravel-sand mixtures are investigated. for this purpose, the cyclic triaxial tests for the specimens with the same relative density (Dr=40%) and variations of gravel content were performed. On the other hand, a series of undrained cyclic triaxial tests were carried out on the isotropically consolidated gravel-sand mixtures with the same void ratio (e=0.7) and from 0% to 30% gravel contents. Void ratios of gravel-sand mixtures with the same relative density (Dr=40%) are found to decrease significantly with the increase of the gravel content from 0% to about 70% and increase thereafter. But the void ratio of the sand matrix among the gravel skeleton increases with the increase of the gravel contents. Test results are as follows : for the isotropically consolidated specimen with 40% of relative density and low gavel contents (GC=0%, 20%, 40%), pore water pressure development and axial strain behavior during undrained cyclic loading show similar behavior to those of the loose sand because of high void ratio, and the specimens with high gravel content (70%) both pore pressure and strata behaviors are similar to those of dense sand. And the isotropically consolidated specimens with the same void ratio (e=0.7) and higher gravel contents show the same behavior of pore water pressure and axial strain as that of the loose sand, but for the lower gravel content this behavior shows similar behavior to that of dense sand. The liquefaction strength of the isotropically consolidated specimens with the same relative density increases with gravel content up to 70%, and the strength decreases with the increase of the gravel content at the same void ratio. Thus, it is confirmed that the liquefaction strength of the gravel-sand mixtures depends both on relative density and void ratio of the whole mixture rather than the relative density of the sand matrix filled among gravels. On the other hand, the behavior of pore water pressure and axial strain for the $K_0-anisotropically$ consolidated gravel-sand mixtures shows almost the same cyclic behavior of the sand with no stress reversal even with some stress reversal of the cyclic loading. Namely, even the stress reversal of about 10% of cyclic stress amplitude, the permanent strain with small cyclic strain increases rapidly with the number of cycles, and the initial liquefaction does not occur always with less than maximum pore water pressure ratio of 1.0. The liquefaction resistance increases with the gravel contents between 0% and 40%, but tends to decrease beyond 40% of gravel content. In conclusion, the cyclic behavior of gravel-sand mixtures depends on factors such as gravel content, void ratio, relative density and consolidation condition.

$K_0$ Values and Shear Strengths under $K_0$ Consolidated Triaxial Test According to Matric Suction for an Unsaturated Soil (불포화토의 $K_0$ 압밀 삼축압축실험시 모관흡수력에 따른 정지토압계수 및 전단강도에 관한 연구)

  • Kim, Tae-Kyung;Oh, Se-Boong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.89-98
    • /
    • 2008
  • In this study, the behaviour of an unsaturated soil was analyzed by performing $K_0$ consolidated triaxial tests. Unsaturated triaxial tests were performed with matric suctions for weathered soils and stress paths under consolidation and stress-strain relationships under shear were obtained. As a result, the $K_0$ value decreased as the matric suction increased. Besides, both isotropic and $K_0$ conditions had similar shear strength envelopes at the same matric suction. Especially, strength parameters could be obtained by stress variables used in the critical state theory more reasonably than by those of Mohr circles at failure.

Undrained Creep Rupture of an Anisotropically Normally Consolidated Clay (이방정규압밀점토의 비배수크리프 파양)

  • Kang, Byung-Hee;Hong, Eui
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.55-64
    • /
    • 1993
  • The Undrained creep tests on the normally consolidated clays with four different consolication ratios(c3c'/clc': 1.0, 0.7, 0.5, 0.4) were performed to investigate the effects of avisotropic consolidation on the undrained creep rupture behavior. The elapsed time to a certain minimum strain rate is decreased with decreasing the value of the consolidation pressure ratio, and the elapsed time to rupture for a certain minimum strain rate is also decreased with decreasing the ratio. The upper yield strength obtained from the equation suggested by Finn and Shead(1.) is coincided well with the creep strength irrespective of the magnitude of the consolidation pressure ratio, and the normallised upper yielding strength by mean confining pressure is decreased with increasing the consolidation pressure ratio. The critical strain for creep rupture, the strain at min. strain rate, is constant irrespective of the magnitude of creep stress, but it increased exponentially with increasing the ratio, It accordingly is dangerous that the potential of in-situ creep rupture is estimated only by the creep rupture test on the isotropically consolidated clay in case of K0-value below 1.0.

  • PDF

Microstructure and Mechanical Properties of ODS Ferrite Produced by Reactive Milling for the MSR Suppression (MSR (Mechanically induced Self-sustaining Reaction)이 억제된 반응성 밀링에 의해 제조된 분산강화 페라이트의 미세조직과 기계적 특성)

  • Hwang, Seung J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.279-287
    • /
    • 2013
  • Oxide Dispersion Strengthened (ODS) Fe with $Al_2O_3$ dispersoid was successfully produced by reactive milling with a mixture of Fe, $Fe_3O_4$ (Magnetite), $Fe_2O_3$ (Hematite) and Al reactants at cryogenic temperature. The milled powders were consolidated by Vacuum Hot Press (HP) at 1323 K, and the consolidated materials were characterized by Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS); the yield strength and the hardness of the consolidated materials were determined by compressive test and Vickers hardness test at room temperature. The grain size of the materials was estimated by X-ray Diffraction technique using the scherrer's formula. The TEM observations showed that the microstructure was comprised with a mixture of nanocrystalline Fe matrix and $Al_2O_3$ nano-dispersoids with a bimodal size distribution; the 0.2% off-set yield strength of the materials was as high as $758{\pm}29$ MPa and the Vickers hardness was $358{\pm}2$. The effect of the cryogenic milling and addition of extra Fe powder was discussed on the suppression of MSR (Mechanically induced Self-sustaining Reaction) for the desired microstructural evolution of ODS alloys.

Phase Transformation and Thermoelectric Properties of N-tyre β Processed by Mechanical Alloying (기계적 합금화로 제조한 N형 β의 상변화 및 열전 특성)

  • Eo, Sun-Cheol
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.375-381
    • /
    • 2002
  • N-type ${\beta}-FeSi_2$ with a nominal composition of $Fe_{0.98}Co_{0.02}Si_2$ powders has been produced by mechanical alloying process and consolidated by vacuum hot pressing. As-milled powders were of metastable state and fully transformed to ${\beta}-FeSi_2$ phase by subsequent isothermal annealing. However, as-consolidated $Fe_{0.98}Co_{0.02}Si_2$ consisted of untransformed mixture of ${\alpha}-Fe_2Si_ 5$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting ${\beta}-FeSi_2$ phase. The transformation behavior of ${\beta}-FeSi_2$ was investigated by utilizing DTA, a modified TGA under magnetic field, SEM, and XRD analyses. Isothermal annealing at $830^{\circ}C$ in vacuum led to the thermoelectric semiconducting ${\beta}-FeSi_2$ phase transformation, but some residual metallic $\alpha$ and $\varepsilon$ phases were unavoidable even after prolonged annealing. Thermoelectric properties were remarkably improved by isothermal annealing due to the transformation from metallic $\alpha$ and $\varepsilon$ phases to semiconducting phases.

Power-Scalable, Sub-Nanosecond Mode-Locked Erbium-Doped Fiber Laser Based on a Frequency-Shifted-Feedback Ring Cavity Incorporating a Narrow Bandpass Filter

  • Vazquez-Zuniga, Luis Alonso;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.177-181
    • /
    • 2013
  • We present an all-fiberized power-scalable, sub-nanosecond mode-locked laser based on a frequency-shifted-feedback ring cavity comprised of an erbium-doped fiber, a downshifting acousto-optic modulator (AOM), and a bandpass filter (BPF). With the aid of the frequency-shifted feedback mechanism provided by the AOM and the narrow filter bandwidth of 0.45 nm, we generate self-starting, mode-locked optical pulses with a spectral bandwidth of ~0.098 nm and a pulsewidth of 432 to 536 ps. In particular, the output power is readily scalable with pump power while keeping the temporal shape and spectral bandwidth. This is obtained via the consolidation of bound pulse modes circulating at the fundamental repetition rate of the cavity. In fact, the consolidated pulses form a single-entity envelope of asymmetric Gaussian shape where no discrete internal pulses are perceived. This result highlights that the inclusion of the narrow BPF into the cavity is crucial to achieving the consolidated pulses.

A Study on the Liquefaction Resistance of Anisotropic Sample under Real Earthquake Loading (이방 구속 조건에서 실지진 하중을 이용한 포화사질토의 액상화 저항강도 특성)

  • Lee, Chae-Jin;Kim, Soo-Il;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.2
    • /
    • pp.5-14
    • /
    • 2010
  • In this study, cyclic triaxial tests were performed under anisotropically consolidated condition by using irregular earthquake loading to consider in-situ condition and seismic wave. Jumunjin sand with a relative density 50 percent was used in the tests. The consolidation pressure ratio (K) was changed from 0.5 to 1.0. The Ofunato and Hachinohe wave were applied as irregular earthquake loadings and liquefaction resistance strengths of each specimen were estimated from the excess pore water pressure (EPWP) ratio. As a results of the cyclic triaxial tests, EPWP ratio increased with increased K value. It shows that isotropically consolidated sand is more susceptible to liquefaction than anisotropically consolidated sand under equal confining pressure and dynamic loadings. From the test results, the relationship between K and EPWP ratio normalized by effective confining pressure and deviator stress was proposed. And a new factor which corrects the liquefaction resistance strength for the in-situ stress condition is proposed.

Densification of Al2O3 Nanopowder by Magnetic Pulsed Compaction and Their Properties (자기펄스 가압성형법에 의한 알루미나 나노분말의 치밀화 및 특성 평가)

  • Kang, R.C.;Lee, M.K.;Kim, W.W.;Rhee, C.K.;Hong, S.J.
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 2008
  • This article presents the challenges toward the successful consolidation of $Al_2O_3$ nanopowder using magnetic pulsed compaction (MPC). In this research the ultrafine-structured $Al_2O_3$ bulks have been fabricated by the combined application of magnetic pulsed compaction (MPC) and subsequent sintering, and their properties were investigated. The obtained density of $Al_2O_3$ bulk prepared by the combined processes was increased with increasing MPC pressure from 0.5 to 1.25 GPa. Relatively higher hardness and fracture toughness in the MPCed specimen at 1.25 GPa were attributed to the retention of the nanostructure in the consolidated bulk without cracks. The higher fracture toughness could be attributed to the crack deflection by homogeneous distribution and the retention of nanostructure, regardless of the presence of porosities. In addition, the as consolidated $Al_2O_3$ bulk using magnetic pulsed compaction showed enhanced breakdown voltage.

A Prediction of Undrained Shear Behavior of the Remolded Weathered Mudstone Soil Using the Constitutive Model (구성모델을 이용한 재성형 이암풍화토의 비배수 전단거동 예측)

  • Lee Sang-Woong;Choo In-Sig;Kim Young-Su;Kim Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.31-40
    • /
    • 2005
  • This study proposed a new yield function considering the spacing ratio of the critical state to predict the undrained shear behavior of anisotropic field ground. We have suggested a nonassociated constitutive model that used a newly modified plastic potential function in order to apply the yield function of the modified Cam-Clay model to the anisotropic consolidation. In this paper, we predicted undrained shear behavior of the remolded weathered mudstone soils in Phohang isotorpically and anisotropically consolidated using the suggested model. To evaluate the reliability of proposed model, we predictied undrained shear behavior of Bankok Clay isotropically, nomally consolidated and Drammen Clay Ko consolidated. The predicted results are consistent with the observed behavior.

Strain rate effects on soil-geosynthetic interaction in fine-grained soil

  • Safa, Maryam;Maleka, Amin;Arjomand, Mohammad-Ali;Khorami, Masoud;Shariati, Mahdi
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.533-542
    • /
    • 2019
  • Geosynthetic reinforced soil method in coarse-grained soils has been widely used in last decades. Two effective factors on soil-geosynthetic interaction are confining stresses and loading rate in clay. In terms of methodology, one pull-out test with four different strain rates, namely 0.75, 1.25, 1.75 and 2.25 mm/min, and three different normal stresses equal to 20, 50, and 80 kg have been performed on specimens with dimensions of 30×30×17 cm in the saturated, consolidated condition. The obtained results have demonstrated that activation of geosynthetic strength at contact surface depends on the applied stress. In addition, the increase in normal stress would increase the shear strength at contact surface between clay and geogrid. Moreover, it is concluded that the strain rate increment would increase the shear strength.