• Title/Summary/Keyword: $K^{+}$ channels

Search Result 4,177, Processing Time 0.035 seconds

Presynatic Expression of HCN Channel Subunits in Cerebellar Basket Cells

  • Yi, Jee-Hyun;Park, Kyung-Joon;Kang, Shin-Jung;Shin, Ki-Soon
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.199-204
    • /
    • 2007
  • HCN (hyperpolarization-activated cyclic nucleotide-gated) channels, whose gene family consists of four subunits (HCN1-4), mediate depolarizing cation currents and contribute to controlling neuronal excitability. In the present study, immunohistochemical and electrophysiological approaches were used to elucidate the role of HCN channels in the cerebellum. Immunohistochemical labeling for HCN1 and HCN2 channels revealed localized expression of both channels at pinceau, the specialized structure of presynaptic axon terminals of basket cells. To determine the functional role of the presynaptic HCN channels, spontaneous inhibitory postsynaptic currents (IPSCs) were recorded from Purkinje cells, the main synaptic targets of basket cells in the cerebellum. While activation of HCN channels by 8-bromo-cAMP increased amplitude of spontaneous IPSCs, blockade of the activated HCN channels by subsequent ZD7288 application reduced the amplitude of spontaneous IPSCs to the level far below the control. Our results imply that modulation of HCN1 and HCN2 channels in presynaptic terminals of basket cells regulates neurotransmitter release, thereby controlling the excitability of Purkinje cells.

A Study on Adult Women's-Awareness of Cosmetics Distribution Channels and Purchase Intention (성인 여성의 화장품 유통채널별 인식도와 구매의도에 관한 연구)

  • Hwang, Geumvitnuri;Shin, Saeyoung
    • Journal of Fashion Business
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • Korean cosmetic distribution channels were formerly divided into sales visits and specialty shops, which made up the entire cosmetics market. However, recently the market and cosmetic distribution channels have become much more diversified. Thus, research for this study focused on the usage and purchase situations of cosmetic distribution channels depending on cosmetic type perception. This study also focused on the intent to purchase cosmetics by a cosmetic distribution channel in order to provide a precise cognitive background of consumers regarding cosmetic distribution channels. In doing so, the competitiveness of those channels could be procured and the causal relationships between these variables can be investigated. To achieve these purposes, the research model and hypotheses were derived through literature research on the cosmetics industry, cosmetic distribution channels, and consumers' intent to purchase. A survey was implemented from September $1^{st}$ to $14^{th}$, 2014 for empirical testing. and was given to female consumers in their 20s. 468 out of 500 surveys were collected; a total of 415 were used for analysis while the others were excluded due to with unreliable responses. The SPSS 21.0 program was used for analysis of materials. The overall conclusion of this study is that there is a relationship between perception of cosmetic distribution channels and intent to purchase. The above research results may stimulate establishment of marketing implications and research material when establishing marketing strategies to promote cosmetic distribution and consumption.

Increased Activity of Large Conductance $Ca^{2+}-Activated$ $K^+$ Channels in Negatively-Charged Lipid Membranes

  • Park, Jin-Bong;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.529-539
    • /
    • 1998
  • The effects of membrane surface charge originated from lipid head groups on ion channels were tested by analyzing the activity of single large conductance $Ca^{2+}-activated\;K^+$ (maxi K) channel from rat skeletal muscle. The conductances and open-state probability ($P_o$) of single maxi K channels were compared in three types of planar lipid bilayers formed from a neutral phosphatidylethanolamine (PE) or two negatively-charged phospholipids, phosphatidylserine (PS) and phosphatidylinositol (PI). Under symmetrical KCl concentrations $(3{\sim}1,000\;mM)$, single channel conductances of maxi K channels in charged membranes were $1.1{\sim}1.7$ times larger than those in PE membranes, and the differences were more pronounced at the lower ionic strength. The average slope conductances at 100 mM KCl were $251{\pm}9.9$, $360{\pm}8.7$ and $356{\pm}12.4$ $(mean{\pm}SEM)$ pS in PE, PS and PI membranes respectively. The potentials at which $P_o$ was 1/2, appeared to have shifted left by 40 mV along voltage axis in the membranes formed with PS or PI. Such shift was consistently seen at pCa 5, 4.5, 4 and 3.5. Estimation of the effect of surface charge from these data indicated that maxi K channels sensed the surface potentials at a distance of $8{\sim}9\;{\AA}$ from the membrane surface. In addition, similar insulation distance ($7{\sim}9\;{\AA}$) of channel mouth from the bilayer surface charge was predicted by a 3-barrier-2-site model of energy profile for the permeation of $K^+$ ions. In conclusion, despite the differences in structure and fluidity of phospholipids in bilayers, the activities of maxi K channels in two charged membranes composed of PS or PI were strikingly similar and larger than those in bilayers of PE. These results suggest that the enhancement of conductance and $P_o$ of maxi channels is mostly due to negative charges in the phospholipid head groups.

  • PDF

Effect of Bogi, Boyang, Onri herbs pretreatment on glutamate ion current (보기, 보양, 온리약의 전처치가 glutamate current에 미치는 영향)

  • Kim, Chang-Ju;Kim, Youn-Jung;Kim, Hyun-Bae;Kim, Ee-Hwa;Lee, Choong-Yeol
    • Journal of Oriental Physiology
    • /
    • v.14 no.2 s.20
    • /
    • pp.67-82
    • /
    • 1999
  • The effects of Bogi, Boyang and Onri herbs on glutamte receptor, and the regulatory mechanism of cAMP-protein kinase on the ion currents activated by Bogi, Boyang and Onri herbs using nystatin-perforated patch clamp were investigated and the following results were obtained. Ginseng radix and Astragali radix, Cervi cornu and Boshniakiae herba, and Aconiti tuber and Zingiberis rhizoma were chosen as Bogi, Boyang and Onri herbs respectively. 1. The ion currents activated by $10^{-5}M$ of glycine were used as controls. The magnitudes of the ion currents by the above named herbs were as follows; Cervi cornu>Astragali radix>Aconiti tuber>Zingiberis rhizoma>Ginseng radix>Boshniakiae herba. 2. The magnitudes of the ion currents by $10^{-5}M$ of glutamate pre-treated with 0.01 mg/ml of Bogi, Boyang and Onri herbs were sharply decreased. 3. The activity of ion channels activated by Bogi herbs pre-treated with $10^{-7}M$ of staurosporin, an inhibitor of protein kinase, for thirty seconds was observed as the experiment proceeded. Staurosporin brought about dephosphorylation of ion channels. Hence, while the activity of ion channels activated by Ginseng radix was decreased, the activity of ion channels activated by Astragali radix was increased, as time went by. 4. The activity of ion channels activated by Boyang herbs pre-treated with $10^{-7}M$ of staurosporin, an inhibitor of protein kinase and an dephosphorylating agent of ion channels, for thirty seconds was investigated. While the activity of ion channels activated by Cervi cornu was increased, the activity of ion channels activated by Boshniakiae herba was initially increased then sharply decreased. 5, The activity of ion channels activated by Onri herbs pre-treated with $10^{-7}M$ of staurosporin, an inhibitor of protein kinase and an dephosphorylating agent of ion channels, for thirty seconds was investigated. While the activity of ion channels activated by Aconiti tuber was increased, that of ion channels activated by Zingiberis rhizomal sharply declined.

  • PDF

Evidence for the Participation of ATP-sensitive Potassium Channels in the Antinociceptive Effect of Curcumin

  • Paz-Campos, Marco Antonio De;Chavez-Pina, Aracely Evangelina;Ortiz, Mario I;Castaneda-Hernandez, Gilberto
    • The Korean Journal of Pain
    • /
    • v.25 no.4
    • /
    • pp.221-227
    • /
    • 2012
  • Background: It has been reported that curcumin, the main active compound of Curcuma longa, also known as turmeric, exhibits antinociceptive properties. The aim of this study was to examine the participation of ATP-sensitive potassium channels ($K_{ATP}$ channels) and, in particular, that of the L-arginine-nitric oxide-cyclic GMP-$K_{ATP}$ channel pathway, in the antinociceptive effect of curcumin. Methods: Pain was induced by the intraplantar injection of 1% formalin in the right hind paw of Wistar rats. Formalin-induced flinching behavior was interpreted as an expression of nociception. The antinociceptive effect of oral curcumin was explored in the presence and absence of local pretreatment with L-NAME, an inhibitor of nitric oxide synthase, ODQ, an inhibitor of soluble guanylyl cyclase, and glibenclamide, a blocker of $K_{ATP}$ channels. Results: Oral curcumin produced a dose-dependent antinociceptive effect in the 1% formalin test. Curcumin-induced antinociception was not altered by local L-NAME or ODQ, but was significantly impaired by glibenclamide. Conclusions: Our results confirm that curcumin is an effective antinociceptive agent. Curcumin-induced antinociception appears to involve the participation of $K_{ATP}$ channels at the peripheral level, as local injection of glibenclamide prevented its effect. Activation of $K_{ATP}$ channels, however, does not occur by activation of the L-arginine-nitric oxide-cGMP-$K_{ATP}$ channel pathway.

Ca2+-regulated ion channels

  • Cox, Daniel H.
    • BMB Reports
    • /
    • v.44 no.10
    • /
    • pp.635-646
    • /
    • 2011
  • Due to its high external and low internal concentration the $Ca^{2+}$ ion is used ubiquitously as an intracellular signaling molecule, and a great many $Ca^{2+}$-sensing proteins have evolved to receive and propagate $Ca^{2+}$ signals. Among them are ion channel proteins, whose $Ca^{2+}$ sensitivity allows internal $Ca^{2+}$ to influence the electrical activity of cell membranes and to feedback-inhibit further $Ca^{2+}$ entry into the cytoplasm. In this review I will describe what is understood about the $Ca^{2+}$ sensing mechanisms of the three best studied classes of $Ca^{2+}$-sensitive ion channels: Large-conductance $Ca^{2+}$-activated $K^+$ channels, small-conductance $Ca^{2+}$-activated $K^+$ channels, and voltage-gated $Ca^{2+}$ channels. Great strides in mechanistic understanding have be made for each of these channel types in just the past few years.

Relative Intensity Noise Suppression of Spectrum-Sliced Channels Using Polarization-Independent Optical Modulators

  • Kim, Hyung Hwan;Manandhar, Dipen;Lee, Jae Seung
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.646-649
    • /
    • 2014
  • Performances of spectrum-sliced channels are strongly affected by their relative intensity noise (RIN). We use polarization-independent optical modulators (PIOMs) for spectrum-sliced channels to suppress their RIN. The PIOM driven by a high sinusoidal voltage signal evenly redistributes optical frequency components in the spectral domain and reduces the RIN. It can be used at a broadband light source (BLS) output to produce spectrum-sliced channels having lower RIN values. Also, it can be used for each spectrum-sliced channel within each optical network unit (ONU). In our experiment, where 12.5-GHz-spaced spectrum-sliced channels are used in 1-GbE speed, the use of PIOM at the BLS output reduces the bit error rate (BER) of the spectrum-sliced channel by more than an order of magnitude. The use of PIOM within the ONU reduces the BER by approximately 3 orders of magnitude.

Experimental research on the failure mechanism of foam concrete with C-Channel embedment

  • Liu, Dianzhong;Wang, Fayu;Fu, Feng;Wang, He
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.263-273
    • /
    • 2017
  • An experimental investigation is carried out on the failure mechanism of foam concrete with cold formed steel double C-Channels embedment. The foam concrete is made of cement and fly ash with a compressive strength between 9 and 24 MPa with different densities. Forty-eight tests have been carried out in four groups of specimens with various embedment depths of the steel in the concrete. Four modes of failure are observed, which include the independent failure of the C-Channels with and without a concrete block inside the channel as well as the combined failure of the two channels, and the failure of the extrusion block. A theoretical model has been developed to understand the failure process. The peak compressive force applied onto the C-Channels that causes failure is calculated. It is concluded that the failure involves independent slippage between two C-Channels, and the steel and the foam concrete blocks inside the C-Channels. A method to calculate the peak force is also developed based on the test results. The calculations also show that the shear strength of the foam concrete is about 8% of the compressive strength with ${\alpha}$ coefficient of 0.4 between the steel and concrete.

Expression of TRP Channels in Mouse Dental Papilla Cell-23 (MDPC-23) Cell Line

  • Shin, Myoung-Sang;Yeon, Kyu-Young;Oh, Seog-Bae;Kim, Joong-Soo
    • International Journal of Oral Biology
    • /
    • v.31 no.4
    • /
    • pp.135-140
    • /
    • 2006
  • Temperature signaling can be initiated by members of transient receptor potential (thermo-TRP) channels. Hot and cold substances applied to teeth usually elicit pain sensation. Since odontoblasts constitute a well-defined layer between the pulp and the mineralized dentin, being first to encounter thermal stimulation from oral cavity, they may be involved in sensory transduction process, in addition to their primary function as formation of dentin. We investigated whether thermo-TRP channels are expressed in a odontoblast cell line, MDPC-23. The expressions of thermo-TRP channels were examined using reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry, fluorometric calcium imaging. Analysis of RT-PCR revealed mRNA expression of TRPV1, TRPV2, TRPV4 and TRPM8, but no TRPV3, TRPA1. Immunohistochemical approach failed to detect TRPV1 expression. Whereas the application of 4-phorbol-12,13-didecanoate($10\;{\mu}M$, a TRPV4 agonist), menthol(1 mM, a TRPM8 agonist) and icilin($10\;{\mu}M$, a TRPM8 agonist) produced the enhancement of intracellular calcium concentration, capsaicin($1\;{\mu}M$, a TRPV1 agonist) did not. Our results suggest that subfamily of thermo-TRP channels expressed in odontoblasts may serve as thermal or mechanical transducer in teeth.

Regulation of Adenosine-activated GIRK Channels by Gq-coupled Receptors in Mouse Atrial Myocytes

  • Cho, Ha-Na
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.145-150
    • /
    • 2010
  • Adenosine (Ado) is an important mediator of the endogenous defense against ischemia-induced injury in the heart. The action of Ado is mediated by activation of G protein-gated inwardly rectifying $K^+$ (GIRK) channels. In turn, GIRK channels are inhibited by reducing phosphatidylinositol 4,5-bisphosphate ($PIP_2$) through Gq protein-coupled receptors (GqPCRs). We previously found that GIRK channels activated by acetylcholine, a muscarinic M2 acetylcholine receptor agonist, are inhibited by GqPCRs in a receptor-specific manner. However, it is not known whether GIRK channels activated by Ado signaling are also regulated by GqPCRs. Presently, this was investigated in mouse atrial myocytes using the patch clamp technique. GIRK channels were activated by $100\;{\mu}M$ Ado. When Ado was repetitively applied at intervals of 5~6 min, the amplitude of second Ado-activated GIRK currents ($I_{K(Ado)}$) was $88.3{\pm}3.7%$ of the first $I_{K(Ado)}$ in the control. Pretreatment of atrial myocytes with phenylephrine, endothelin-1, or bradykinin prior to a second application of Ado reduced the amplitude of the second $I_{K(Ado)}$ to $25.5{\pm}11.6%$, $30.5{\pm}5.6%$, and $96.0{\pm}2.7%$, respectively. The potency of $I_{K(Ado)}$ inhibition by GqPCRs was different with that observed in acetylcholine-activated GIRK currents ($I_{K(ACh)}$) (endothelin-1>phenylephrine>bradykinin). $I_{K(Ado)}$ was almost completely inhibited by $500\;{\mu}M$ of the $PIP_2$ scavenger neomycin, suggesting low $PIP_2$ affinity of $I_{K(Ado)}$. Taken together, these results suggest that the crosstalk between GqPCRs and the Ado-induced signaling pathway is receptor-specific. The differential change in $PIP_2$ affinity of GIRK channels activated by Ado and ACh may underlie, at least in part, their differential responses to GqPCR agonists.