• Title/Summary/Keyword: $Interleukin-1{\beta}$

Search Result 927, Processing Time 0.202 seconds

630 nm-OLED Accelerates Wound Healing in Mice Via Regulation of Cytokine Release and Genes Expression of Growth Factors

  • Mo, SangJoon;Chung, Phil-Sang;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.485-495
    • /
    • 2019
  • Photobiomodulation (PBM) using organic light emitting diodes (OLEDs) surface light sources have recently been claimed to be the next generation of PBM light sources. However, the differences between light emitting diodes (LEDs) and OLED mechanisms in vitro and in vivo have not been well studied. In vivo mouse models were used to investigate the effects of OLED irradiation on cellular function and cutaneous wound healing compared to LED irradiation. Mice in the LED- and OLED-irradiated groups were subjected to irradiation with 6 J/㎠ LED and OLED (630 nm), respectively, for 14 days after wounding, and some mice were sacrificed for the experiments on days 3, 7, 10, and 14. To evaluate wound healing, we performed hematoxylin-eosin and Masson's trichrome staining and quantified collagen density by computerized image analysis. The results showed that the size of the wound, collagen density, neo-epidermis thickness, number of new blood vessels, and number of fibroblasts and neutrophils was significantly influenced by LED and OLED irradiation. The tissue levels of interleukin (IL)-β, IL-6 and tumor necrosis factor (TNF)-α were investigated by immunohistochemical staining. LED and OLED irradiation resulted in a significant increase in the tissue IL-β and IL-6 levels at the early stage of wound healing (P < 0.01), and a decrease in the tissue TNF-α level at all stages of wound healing (P < 0.05), compared to the no-treatment group. The expression levels of the genes encoding vascular endothelial growth factor and transforming growth factor-beta 1 were significantly increased in LED and OLED-irradiated wound tissue at the early stage of wound healing (P < 0.01) compared to the no-treatment group. Thus, OLED as well as LED irradiation accelerated wound healing by modulating the synthesis of anti-inflammatory cytokines and the expression levels of genes encoding growth factors, promoting collagen regeneration and reducing scarring. In conclusion, this suggests the possibility of OLED as a new light source to overcome the limitations of existing PBMs.

Effects of Bifidobacterium Strains Treated with Gastrointestinal Enzymes on Cytokine Induction in RAW 264.7 Macrophage Cells

  • Kim, Dong-Woon;Cho, Sung-Back;Jung, Hyun-Jung;Lee, Sung-Dae;Kim, Sang-Ho;Cho, Kyu-Ho;Kang, Seog-Jin;Kim, In-Cheul
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.739-745
    • /
    • 2010
  • The objective of the current study was to compare the abilities of undigested and enzymatically digested bifidobacteria to induce nitric oxide and cytokine release in RAW 264.7 macrophage cells. Nine different Bifidobacterium strains derived from herbivorous animals were digested with pepsin and then pancreatin, and the precipitates and supernatants were acquired via centrifugation. The RAW 264.7 cells were incubated with whole cells, the precipitate, or the supernatant, and the macrophage culture supernatants were analyzed with respect to the induction of nitric oxide and cytokines. Pronounced increases in the production of nitric oxide, interleukin (IL)-$1{\beta}$, IL-6, IL-12, and tumor necrosis factor-$\alpha$ (TNF-$\alpha$) were observed when cultured with whole cells and the precipitates. It is noteworthy that the precipitates in most of the Bifidobacterium strains evidenced a trend toward superior IL-12 release compared with whole cells. The results showed that both whole cells and digested Bifidobacterium sp. are effective at stimulating RAW 264.7 cells to induce the production of nitric oxide and cytokines. The pepsin-pancreatin system used in the current study may be useful in unraveling the mechanism by which ingested lactic acid bacteria modulate the induction of macrophage mediators at the cellular level.

Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae

  • Fernando, I.P. Shanura;Kim, Hyun-Soo;Sanjeewa, K.K. Asanka;Oh, Jae-Young;Jeon, You-Jin;Lee, Won Woo
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.261-273
    • /
    • 2017
  • Fine dust (FD) particles have become a major contributor to air pollution causing detrimental effects on the respiratory system and skin. Although some studies have investigated the effects of FD on the respiratory system, their possible effects on the skin remain under-explored. We investigated the FD mediated inflammatory responses in keratinocytes, present in the outer layers of skin tissues and the transfer of inflammatory potential to macrophages. We further evaluated the anti-inflammatory effects of the polyphenolic derivative, diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae against FD-induced inflammation. Size distribution of FD particles was analyzed by scanning electron microscopy. FD particles induced the production of cyclooxygenase-2, prostaglandin E2 ($PGE_2$), interleukin (IL)-$1{\beta}$, and IL-6 in HaCaT keratinocytes and the expression of nitric oxide (NO), inducible nitric oxide synthases (iNOS), $PGE_2$, tumor necrosis factor-${\alpha}$ expression in RAW 264.7 macrophages. Further, we evaluated the inflammatory potential of the culture medium of inflammation-induced HaCaT cells in RAW 264.7 macrophages and observed a marked increase in the expression of NO, iNOS, $PGE_2$, and proinflammatory cytokines. DPHC treatment markedly attenuated the inflammatory responses, indicating its effectiveness in suppressing a broad range of inflammatory responses. It also showed anti-inflammatory potential in in-vivo experiments using FD-stimulated zebrafish embryos by decreasing NO and reactive oxygen species production, while eventing cell death caused by inflammation.

Anti-Inflammatory Effect of Alginate Oligosaccharides Produced by an Alginate-Degrading Enzyme from Shewanella oneidensis PKA1008 on LPS-Induced RAW 264.7 Cells (Shewanella oneidensis PKA1008 유래 알긴산 분해 효소에 의해 제조된 알긴산 올리고당의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Yong;Bark, Si-Woo;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Ahn, Dong-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.6
    • /
    • pp.888-897
    • /
    • 2015
  • The anti-inflammatory effect of alginate oligosaccharides on LPS-induced RAW 264.7 cells was investigated at different time points (0-60 h). The alginate oligosaccharides were produced by an alginate-degrading enzyme from Shewanella oneidensis PKA1008. The alginate oligosaccharides decreased the production of nitric oxide and proinflammatory cytokines [tumor necrosis factor-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6] in a dose-dependent manner. The alginate oligosaccharides showed peak anti-inflammatory activity after 36 h of incubation; at that time point, reduced protein expression of NF-${\kappa}B$ p65, iNOS, and COX-2 was detected. Furthermore, the alginate oligosaccharide treatment reduced the formation of ear edema at 36 h compared to samples examined at 0 h when the oligosaccharides were administered at 50 and 250 mg/kg body weight, as well as dermal thickness and mast cell numbers in a histological analysis. These results suggest that alginate oligosaccharides are a promising anti-inflammatory agent.

Anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages and in vivo zebrafish model

  • Ko, Seok-Chun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • v.9 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: In this study, potential anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue was assessed via nitric oxide (NO) production in lipopolysaccahride (LPS) induced RAW 264.7 macrophages and in vivo zebrafish model. MATERIALS/METHODS: We investigated the ability of enzymatic hydrolysates from Styela clava flesh tissue to inhibit LPS-induced expression of pro-inflammatory mediators in RAW 264.7 macrophages, and the molecular mechanism through which this inhibition occurred. In addition, we evaluated anti-inflammatory effect of enzymatic hydrolysates against a LPS-exposed in in vivo zebrafish model. RESULTS: Among the enzymatic hydrolysates, Protamex-proteolytic hydrolysate exhibited the highest NO inhibitory effect and was fractionated into three ranges of molecular weight by using ultrafiltration (UF) membranes (MWCO 5 kDa and 10 kDa). The above 10 kDa fraction down-regulated LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing production of NO and prostaglandin $E_2$ ($PGE_2$) in LPS-activated RAW 264.7 macrophages. The above 10 kDa fraction suppressed LPS-induced production of pro-inflammatory cytokines, including interleukin $(IL)-1{\beta}$, IL-6, and tumor necrosis factor $(TNF)-{\alpha}$. In addition, the above 10 kDa fraction inhibited LPS-induced phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinase (JNK), and p38. Furthermore, NO production in live zebrafish induced by LPS was reduced by addition of the above 10 kDa fraction from S. clava enzymatic hydrolysate. CONCLUSION: The results of this study suggested that hydrolysates derived from S. clava flesh tissue would be new anti-inflammation materials in functional resources.

Rifampicin Alleviates Atopic Dermatitis-Like Response in vivo and in vitro

  • Kim, Seung Hyun;Lee, Ki Man;Lee, Geum Seon;Seong, Ju-Won;Kang, Tae Jin
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.634-640
    • /
    • 2017
  • Atopic dermatitis (AD) is a common inflammatory skin disorder mediated by inflammatory cells, such as macrophages and mast cells. Rifampicin is mainly used for the treatment of tuberculosis. Recently, it was reported that rifampicin has anti-inflammatory and immune-suppressive activities. In this study, we investigated the effect of rifampicin on atopic dermatitis in vivo and in vitro. AD was induced by treatment with 2, 4-dinitrochlorobenzene (DNCB) in NC/Nga mice. A subset of mice was then treated with rifampicin by oral administration. The severity score and scratching behavior were alleviated in the rifampicin-treated group. Serum immunoglobulin E (IgE) and interleukin-4 (IL-4) levels were also ameliorated in mice treated with rifampicin. We next examined whether rifampicin has anti-atopic activity via suppression of mast cell activation. Rifampicin suppressed the release of ${\beta}$-hexosaminidase and histamine from human mast cell (HMC)-1 cultures stimulated with compound 48/80. Treatment with rifampicin also inhibited secretion of inflammatory mediators, such tumor necrosis factor-${\alpha}$ ($TNF-{\alpha}$) and prostaglandin $D_2$ ($PGD_2$), in mast cells activated by compound 48/80. The mRNA expression of cyclooxygenase 2 (COX-2) was reduced in the cells treated with rifampicin in a concentration-dependent manner. These results suggest that rifampicin can be used to treat atopic dermatitis.

Anti-inflammatory Activity of Ethanol Extract of Undaria pinnatifida Root in RAW 264.7 Cells (RAW 264.7 세포에서의 미역(Undaria pinnatifida) 뿌리 에탄올 추출물의 항염증활성)

  • Kang, Bo-Kyeong;Ahn, Na-Kyung;Choi, Yeon-Uk;Kim, Min-Ji;Bark, Si-Woo;Pak, Won-Min;Kim, Bo-Ram;Kim, Koth-Bong-Woo-Ri;Ahn, Dong-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.751-756
    • /
    • 2014
  • The anti-inflammatory effects of the ethanol extract of Undaria pinnatifida root (UPREE) were investigated using the lipopolysaccharide (LPS)-induced inflammatory response in RAW 264.7 cells by measuring the production of nitric oxide (NO), interleukin (IL)-6, tumor necrosis factor (TNF)-${\alpha}$, and IL-$1{\beta}$, and cell proliferation. We found that NO levels were reduced by 34% at $100{\mu}g/mL$. Moreover, the production of IL-6 and TNF-${\alpha}$ was suppressed by the UPREE treatment. In particular, the IL-6 production was inhibited by more than 30% at $100{\mu}g/mL$ UPREE. The proliferation of RAW 264.7 cells was measured by MTT assay, and we found no cytotoxicity in those cells treated with UPREE compared to the control. Our results suggest that UPREE shows promise as a therapeutic anti-inflammatory treatment.

Anti-Inflammatory Activity of Pinus koraiensis Cone Bark Extracts Prepared by Micro-Wave Assisted Extraction

  • Kang, Sun-Ae;Kim, Dong-Hee;Hong, Shin-Hyub;Park, Hye-Jin;Kim, Na-Hyun;Ahn, Dong-Hyun;An, Bong-Jeun;Kwon, Joong-Ho;Cho, Young-Je
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.236-244
    • /
    • 2016
  • In this study, we compared the anti-inflammatory activity of Pinus koraiensis cone bark extracts prepared by conventional extraction and microwave-assisted extraction (MAE). Water extracts and 50% ethanol extracts prepared using MAE were applied to RAW 264.7 cell at 5, 10, 25, and $50{\mu}g/mL$ of concentrations, and tested for cytoxicity. The group treated with $50{\mu}g/mL$ of 50% ethanol extracts showed toxicity. In order to investigate the inhibition of nitric oxide (NO) production in RAW 264.7 cells, extracts of water and ethanol were treated with 5, 10, and $25{\mu}g/mL$ concentrations. The inhibitory activity of water and 50% ethanol extracts groups were determined as 40% and 60% at $25{\mu}g/mL$ concentration, respectively. We found concentration dependent decreases on inducible NO synthase. The inhibitory effect against forming inflammatory cytokines, prostaglandin $E_2$, tumor necrosis factor-${\alpha}$, interleukin (IL)-6, and IL-$1{\beta}$, was also superior in the $25{\mu}g/mL$ treated group than the control group. According to these results, the water extracts and 50% ethanol extracts both inhibited inflammatory mediators by reducing the inflammatory response. Therefore, The MAE extracts of P. koraiensis cone bark can be developed as a functional ingredient with anti-inflammatory activity.

Induction of Cytokines and Nitric Oxide in Murine Macrophages Stimulated with Enzymatically Digested Lactobacillus Strains

  • Kim, Dong-Woon;Cho, Sung-Back;Yun, Cheol-Heui;Jeong, Ha-Yeon;Chung, Wan-Tae;Choi, Chang-Weon;Lee, Hyun-Jeong;Nam, In-Sik;Suh, Guk-Hyun;Lee, Sang-Suk;Lee, Byong-Seak
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.373-378
    • /
    • 2007
  • Based on observations that lactic acid bacteria have the ability to activate macrophages, we assessed the potential effects of eight different Lactobacillus strains treated with gastrointestinal enzymes on the production of nitric oxide and various cytokines in macrophages. RAW 264.7 murine macrophage cells were cultured with either precipitates or supernatants of Lactobacillus strains digested with pepsin followed by pancreatin. The increased production of nitric oxide and interleukin $(IL)-1{\beta}$, IL-6, IL-12 and tumour necrosis factor $(TNF)-{\alpha}$ were observed when cultured with precipitates, and this effect was largely strain-dependent. In contrast, the exposure of RAW 264.7 cells to supernatants produced weaker or nearly undetectable effects in comparison to the effects of exposure to precipitates. The induction of nitric oxide appeared to be unaffected. These results demonstrate that nitric oxide and cytokines were effectively induced when the bacterial precipitate was treated with macrophages. The results of the present study also indicate that Lactobacillus strains treated with digestive enzymes are capable of stimulating the production of nitric oxide and cytokines in macrophages, which may modulate the gastrointestinal immune function of the host when it is given as a feed additive.

Effects of systemic administration of ibuprofen on stress response in a rat model of post-traumatic stress disorder

  • Lee, Bombi;Sur, Bongjun;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.357-366
    • /
    • 2016
  • Pro-inflammatory cytokine and brain-derived neurotrophic factor (BDNF) are modulated in post-traumatic stress disorder (PTSD). This study investigated the effects of ibuprofen (IBU) on enhanced anxiety in a rat model of PTSD induced by a single prolonged stress (SPS) procedure. The effects of IBU on inflammation and BDNF modulation in the hippocampus and the mechanisms underlying for anxiolytic action of IBU were also investigated. Male Sprague-Dawley rats were given IBU (20 or 40 mg/kg, i.p., once daily) for 14 days. Daily IBU (40 mg/kg) administration significantly increased the number and duration of open arm visits in the elevated plus maze (EPM) test, reduced the anxiety index in the EPM test, and increased the time spent in the center of an open field after SPS. IBU administration significantly decreased the expression of pro-inflammatory mediators, such as tumor necrosis $factor-{\alpha}$, $interleukin-1{\beta}$, and BDNF, in the hippocampus, as assessed by reverse transcription-polymerase chain reaction analysis and immunohistochemistry. These findings suggest that IBU exerts a therapeutic effect on PTSD that might be at least partially mediated by alleviation of anxiety symptoms due to its anti-inflammatory activity and BDNF expression in the rat brain.