• 제목/요약/키워드: $Interleukin-1{\beta}$

검색결과 923건 처리시간 0.03초

고콜레스테롤혈증 성인에서 울금과 명일엽 복합 추출물의 복용에 따른 혈중지질, 항산화 및 염증 관련 지표의 변화 (The Effects of Angelica keiskei Koidzumi and Turmeric Extract Supplementation on the Blood Lipids, and Antioxidant and Inflammatory Markers in Hypercholesterolemic Adults in Korea)

  • 윤선주;연지영;김명희;강명화;김태현;손연경;김미현
    • 한국식품영양학회지
    • /
    • 제22권4호
    • /
    • pp.517-525
    • /
    • 2009
  • This study investigated the effects of Angelica keiskei Koidzumi and turmeric extract supplementation(ATE) on blood lipids, antioxidant and inflammatory markers in 35 hypercholesterolemic Korean adults with high blood cholesterol levels (serum total cholesterol$\geq200mg/d{\ell}$ or LDL-cholesterol$\geq130mg/d{\ell}$). They received ATE(n=21, 14 females and 7 males) or placebo(control group, n=14, 11 females and 3 males) for 4 weeks. There was no significant change in serum total cholesterol, LDL-cholesterol and HDL-cholesterol levels after ATE supplementation in the both groups. However, the LDLcholesterol: HDL-cholesterol ratio(LPH) was significantly decreased and both serum prostagrandin E2(PGE2) levels were significantly decreased in those receiving ATE. No significant changes were evident in interleukin(IL)-$1\beta$, IL-6, IL-8, 8-isoprostane, malondialehyde, total antioxidant capacity and oxidized-LDL. These results suggest that complex extract of Angelica keiske and turmeric has the potential to decrease cardiovascular risk by reducing LPH and inflammatory mediator $PGE_2$ in hypercholesterolemic adults.

Acetyl Eburicoic Acid from Laetiporus sulphureus var. miniatus Suppresses Inflammation in Murine Macrophage RAW 264.7 Cells

  • Saba, Evelyn;Son, Youngmin;Jeon, Bo Ra;Kim, Seong-Eun;Lee, In-Kyoung;Yun, Bong-Sik;Rhee, Man Hee
    • Mycobiology
    • /
    • 제43권2호
    • /
    • pp.131-136
    • /
    • 2015
  • The basidiomycete Laetiporus sulphureus var. miniatus belongs to the Aphyllophorales, Polyporaceae, and grows on the needleleaf tree. The fruiting bodies of Laetiporus species are known to produce N-methylated tyramine derivatives, polysaccharides, and various lanostane triterpenoids. As part of our ongoing effort to discover biologically active compounds from wood-rotting fungi, an anti-inflammatory triterpene, LSM-H7, has been isolated from the fruiting body of L. sulphureus var. miniatus and identified as acetyl eburicoic acid. LSM-H7 dose-dependently inhibited the NO production in RAW 264.7 cells without any cytotoxicity at the tested concentrations. Furthermore it suppressed the production of proinflammatory cytokines, mainly inducible nitric oxide synthase, cyclooxygenase-2, interleukin (IL)-$1{\beta}$, IL-6 and tumor necrosis factor ${\alpha}$, when compared with glyceraldehyde 3-phosphate dehydrogenase. These data suggest that LSM-H7 is a crucial component for the anti-inflammatory activity of L. sulphureus var. miniatus.

Ginsenoside Rg3 Alleviates Lipopolysaccharide-Induced Learning and Memory Impairments by Anti-Inflammatory Activity in Rats

  • Lee, Bombi;Sur, Bongjun;Park, Jinhee;Kim, Sung-Hun;Kwon, Sunoh;Yeom, Mijung;Shim, Insop;Lee, Hyejung;Hahm, Dae-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제21권5호
    • /
    • pp.381-390
    • /
    • 2013
  • The purpose of this study was to examine whether ginsenoside Rg3 (GRg3) could improve learning and memory impairments and inflammatory reactions induced by injecting lipopolysaccharide (LPS) into the brains of rats. The effects of GRg3 on proinflammatory mediators in the hippocampus and the underlying mechanisms of these effects were also investigated. Injection of LPS into the lateral ventricle caused chronic inflammation and produced deficits in learning in a memory-impairment animal model. Daily administration of GRg3 (10, 20, and 50 mg/kg, i.p.) for 21 consecutive days markedly improved the LPS-induced learning and memory disabilities demonstrated on the step-through passive avoidance test and Morris water maze test. GRg3 administration significantly decreased expression of pro-inflammatory mediators such as tumor necrosis factor-${\alpha}$, interleukin-1${\beta}$, and cyclooxygenase-2 in the hippocampus, as assessed by reverse transcription-polymerase chain reaction analysis and immunohistochemistry. Together, these findings suggest that GRg3 significantly attenuated LPS-induced cognitive impairment by inhibiting the expression of pro-inflammatory mediators in the rat brain. These results suggest that GRg3 may be effective for preventing or slowing the development of neurological disorders, including Alzheimer's disease, by improving cognitive and memory functions due to its anti-inflammatory activity in the brain.

Phellodendron amurense and Its Major Alkaloid Compound, Berberine Ameliorates Scopolamine-Induced Neuronal Impairment and Memory Dysfunction in Rats

  • Lee, Bom-Bi;Sur, Bong-Jun;Shim, In-Sop;Lee, Hye-Jung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권2호
    • /
    • pp.79-89
    • /
    • 2012
  • We examine whether Phellodendron amurense (PA) and its major alkaloid compound, berberine (BER), improved memory defects caused by administering scopolamine in rats. Effects of PA and BER on the acetylcholinergic system and pro-inflammatory cytokines in the hippocampus were also investigated. Male rats were administered daily doses for 14 days of PA (100 and 200 mg/kg, i.p.) and BER (20 mg/kg, i.p.) 30 min before scopolamine injection (2 mg/kg, i.p.). Daily administration of PA and BER improved memory impairment as measured by the passive avoidance test and reduced the escape latency for finding the platform in the Morris water maze test. Administration of PA and BER significantly alleviated memory-associated decreases in cholinergic immunoreactivity and restored brain-derived neurotrophic factor and cAMP-response element-binding protein mRNA expression in the hippocampus. PA and BER also decreased significantly the expression of proinflammatory cytokines such as interleukin-$1{\beta}$, tumor necrosis factor-${\alpha}$ and cyclooxygenase-2 mRNA in the hippocampus. These results demonstrated that PA and BER had significant neuroprotective effects against neuronal impairment and memory dysfunction caused by scopolamine in rats. These results suggest that PA and BER may be useful as therapeutic agents for improving cognitive functioning by stimulating cholinergic enzyme activity and alleviating inflammatory responses.

LPS로 유도된 RAW 264.7 대식세포에 대한 애기외톨개 모자반(Myagropsis yendoi) 에틸아세테이트 분획물의 항염증 효과 (Anti-inflammatory Effect of an Ethyl Acetate Fraction from Myagropsis yendoi on Lipopolysaccharides-stimulated RAW 264.7 Cells)

  • 김보운;김재일;김형락;변대석
    • 한국수산과학회지
    • /
    • 제47권5호
    • /
    • pp.527-536
    • /
    • 2014
  • An ethanolic extract from Myagropsis yendoi was fractionated using several solvents. Among these, an ethyl acetate fraction (Myagropsis yendoi ethyl acetate fraction: MYE) showed the highest anti-inflammatory activity based on inhibition of lipopolysaccharides (LPS)-induced nitric oxide (NO) production in RAW 264.7 cells. We thus investigated the molecular mechanisms underlying MYE's inhibitory effects. Pretreatment of cells with up to $30{\mu}g/mL$ of MYE significantly inhibited NO production and inducible nitric oxide synthase expression in a dose-dependent manner (P<0.05). Similarly, MYE markedly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$, as well as their mRNA levels. While the nuclear translocation of nuclear factor-kappa B (NF-${\kappa}B$) was strongly suppressed by MYE, the activation of a nuclear factor erythroid 2-related factor (Nrf2) was increased. Moreover, MYE significantly reduced the phosphorylation of JNK, p38 MAPK, and phosphatidylinositol 3-kinase/Akt in LPS-stimulated cells. These results indicate that MYE contains anti-inflammatory compounds, and that it might be used as a dietary supplement for the prevention of inflammatory diseases.

Magnoliae Cortex and maize modulate Porphyromonas gingivalis-induced inflammatory reactions

  • Kim, Jae-Yoon;Kim, Kyoung-Hwa;Kwag, Eun-Hye;Seol, Yang Jo;Lee, Yong Moo;Ku, Young;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • 제48권2호
    • /
    • pp.70-83
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the capacity of single and combined applications of the bark of the stems and roots of Magnolia officinalis Rehd. et Wils. (Magnoliae Cortex) and Zea mays L. (maize) to modulate inflammation in RAW 264.7 cells stimulated with Porphyromonas gingivalis. Methods: RAW 264.7 cells were stimulated with P. gingivalis, and Magnoliae Cortex and/or maize was added. Cytotoxicity and the capacity to modulate inflammation were determined with a methylthiazol tetrazolium (MTT) assay, nitrite production, enzyme-linked immunosorbent assay (ELISA), and western blotting. Results: Treatment with Magnoliae Cortex and/or maize inhibited nuclear transcription factor ${\kappa}B$ ($NF-{\kappa}B$) pathway activation and nuclear p44/42 mitogen-activated protein kinase (MAPK) and inducible nitric oxide synthase (iNOS) protein expression in P. gingivalis-stimulated RAW 264.7 cells. Moreover, the treatments suppressed cytokines (prostaglandin $E_2$ [$PGE_2$], interleukin $[IL]-1{\beta}$, and IL-6) and nitrite production. Conclusions: Both Magnoliae Cortex and maize exerted an anti-inflammatory effect on P. gingivalis-stimulated RAW 264.7 cells, and this effect was more pronounced when the extracts were combined. These findings show that these extracts may be beneficial for slowing the progression of periodontal disease.

Antioxidant and Anti-inflammatory Effects of Yam (Dioscorea batatas Decne.) on Azoxymethane-induced Colonic Aberrant Crypt Foci in F344 Rats

  • Son, In Suk;Lee, Jeong Soon;Lee, Ju Yeon;Kwon, Chong Suk
    • Preventive Nutrition and Food Science
    • /
    • 제19권2호
    • /
    • pp.82-88
    • /
    • 2014
  • Yam (Dioscorea batatas Decne.) has long been used as a health food and oriental folk medicine because of its nutritional fortification, tonic, anti-diarrheal, anti-inflammatory, antitussive, and expectorant effects. Reactive oxygen species (ROS), which are known to be implicated in a range of diseases, may be important progenitors of carcinogenesis. The aim of this study was to investigate the modulatory effect of yam on antioxidant status and inflammatory conditions during azoxymethane (AOM)-induced colon carcinogenesis in male F344 rats. We measured the formation of aberrant crypt foci (ACF), hemolysate antioxidant enzyme activities, colonic mucosal antioxidant enzyme gene expression, and colonic mucosal inflammatory mediator gene expression. The feeding of yam prior to carcinogenesis significantly inhibited AOM-induced colonic ACF formation. In yam-administered rats, erythrocyte levels of glutathione, glutathione peroxidase (GPx), and catalase were increased and colonic mucosal gene expression of Cu/Zn-superoxide dismutase (SOD), Mn-SOD, and GPx were up-regulated compared to the AOM group. Colonic mucosal gene expression of inflammatory mediators (i.e., nuclear factor kappaB, inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor alpha, and interleukin-1beta) was suppressed by the yam-supplemented diet. These results suggest that yam could be very useful for the prevention of colon cancer, as they enhance the antioxidant defense system and modulate inflammatory mediators.

630 nm-OLED Accelerates Wound Healing in Mice Via Regulation of Cytokine Release and Genes Expression of Growth Factors

  • Mo, SangJoon;Chung, Phil-Sang;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • 제3권6호
    • /
    • pp.485-495
    • /
    • 2019
  • Photobiomodulation (PBM) using organic light emitting diodes (OLEDs) surface light sources have recently been claimed to be the next generation of PBM light sources. However, the differences between light emitting diodes (LEDs) and OLED mechanisms in vitro and in vivo have not been well studied. In vivo mouse models were used to investigate the effects of OLED irradiation on cellular function and cutaneous wound healing compared to LED irradiation. Mice in the LED- and OLED-irradiated groups were subjected to irradiation with 6 J/㎠ LED and OLED (630 nm), respectively, for 14 days after wounding, and some mice were sacrificed for the experiments on days 3, 7, 10, and 14. To evaluate wound healing, we performed hematoxylin-eosin and Masson's trichrome staining and quantified collagen density by computerized image analysis. The results showed that the size of the wound, collagen density, neo-epidermis thickness, number of new blood vessels, and number of fibroblasts and neutrophils was significantly influenced by LED and OLED irradiation. The tissue levels of interleukin (IL)-β, IL-6 and tumor necrosis factor (TNF)-α were investigated by immunohistochemical staining. LED and OLED irradiation resulted in a significant increase in the tissue IL-β and IL-6 levels at the early stage of wound healing (P < 0.01), and a decrease in the tissue TNF-α level at all stages of wound healing (P < 0.05), compared to the no-treatment group. The expression levels of the genes encoding vascular endothelial growth factor and transforming growth factor-beta 1 were significantly increased in LED and OLED-irradiated wound tissue at the early stage of wound healing (P < 0.01) compared to the no-treatment group. Thus, OLED as well as LED irradiation accelerated wound healing by modulating the synthesis of anti-inflammatory cytokines and the expression levels of genes encoding growth factors, promoting collagen regeneration and reducing scarring. In conclusion, this suggests the possibility of OLED as a new light source to overcome the limitations of existing PBMs.

Effects of Bifidobacterium Strains Treated with Gastrointestinal Enzymes on Cytokine Induction in RAW 264.7 Macrophage Cells

  • Kim, Dong-Woon;Cho, Sung-Back;Jung, Hyun-Jung;Lee, Sung-Dae;Kim, Sang-Ho;Cho, Kyu-Ho;Kang, Seog-Jin;Kim, In-Cheul
    • 한국축산식품학회지
    • /
    • 제30권5호
    • /
    • pp.739-745
    • /
    • 2010
  • The objective of the current study was to compare the abilities of undigested and enzymatically digested bifidobacteria to induce nitric oxide and cytokine release in RAW 264.7 macrophage cells. Nine different Bifidobacterium strains derived from herbivorous animals were digested with pepsin and then pancreatin, and the precipitates and supernatants were acquired via centrifugation. The RAW 264.7 cells were incubated with whole cells, the precipitate, or the supernatant, and the macrophage culture supernatants were analyzed with respect to the induction of nitric oxide and cytokines. Pronounced increases in the production of nitric oxide, interleukin (IL)-$1{\beta}$, IL-6, IL-12, and tumor necrosis factor-$\alpha$ (TNF-$\alpha$) were observed when cultured with whole cells and the precipitates. It is noteworthy that the precipitates in most of the Bifidobacterium strains evidenced a trend toward superior IL-12 release compared with whole cells. The results showed that both whole cells and digested Bifidobacterium sp. are effective at stimulating RAW 264.7 cells to induce the production of nitric oxide and cytokines. The pepsin-pancreatin system used in the current study may be useful in unraveling the mechanism by which ingested lactic acid bacteria modulate the induction of macrophage mediators at the cellular level.

Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae

  • Fernando, I.P. Shanura;Kim, Hyun-Soo;Sanjeewa, K.K. Asanka;Oh, Jae-Young;Jeon, You-Jin;Lee, Won Woo
    • ALGAE
    • /
    • 제32권3호
    • /
    • pp.261-273
    • /
    • 2017
  • Fine dust (FD) particles have become a major contributor to air pollution causing detrimental effects on the respiratory system and skin. Although some studies have investigated the effects of FD on the respiratory system, their possible effects on the skin remain under-explored. We investigated the FD mediated inflammatory responses in keratinocytes, present in the outer layers of skin tissues and the transfer of inflammatory potential to macrophages. We further evaluated the anti-inflammatory effects of the polyphenolic derivative, diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae against FD-induced inflammation. Size distribution of FD particles was analyzed by scanning electron microscopy. FD particles induced the production of cyclooxygenase-2, prostaglandin E2 ($PGE_2$), interleukin (IL)-$1{\beta}$, and IL-6 in HaCaT keratinocytes and the expression of nitric oxide (NO), inducible nitric oxide synthases (iNOS), $PGE_2$, tumor necrosis factor-${\alpha}$ expression in RAW 264.7 macrophages. Further, we evaluated the inflammatory potential of the culture medium of inflammation-induced HaCaT cells in RAW 264.7 macrophages and observed a marked increase in the expression of NO, iNOS, $PGE_2$, and proinflammatory cytokines. DPHC treatment markedly attenuated the inflammatory responses, indicating its effectiveness in suppressing a broad range of inflammatory responses. It also showed anti-inflammatory potential in in-vivo experiments using FD-stimulated zebrafish embryos by decreasing NO and reactive oxygen species production, while eventing cell death caused by inflammation.