• Title/Summary/Keyword: $Hg^{2+}$ ion

Search Result 192, Processing Time 0.033 seconds

Two 3D CdII and ZnII Complexes Based on Flexible Dicarboxylate Ligand and Nitrogen-containing Pillar: Synthesis, Structure, and Luminescent Properties

  • Liu, Liu;Fan, Yan-Hua;Wu, Lan-Zhi;Zhang, Huai-Min;Yang, Li-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3749-3754
    • /
    • 2013
  • Two 3D isomorphous and isostructural complexes, namely, $[Zn(BDOA)(bpy)(H_2O)_2]_n$ (1) and $[Cd(BDOA)-(bpy)(H_2O)_2]_n$ (2); (BDOA = Benzene-1,4-dioxyacetic acid, bpy = 4,4'-bipyridine) were synthesized under hydrothermal conditions and characterized by means of elemental analyses, thermogravimetric (TG), infrared spectrometry, and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the triclinic system, space group P-1 and each metal ion in the complexes are six-coordinated with the same coordination environment. In the as-synthesized complexes, $BDOA^{2-}$ anions link central metal ions to form a 1D zigzag chain $[-BDOA^{2-}-Zn(Cd)-BDOA^{2-}-Zn(Cd)-]_{\infty}$, whereas bpy pillars connect metal ions to generate a 1D linear chain $[-bpy-Zn(Cd)-bpy-Zn(Cd)-]_{\infty}$. Both infinite chains are interweaved into 2D grid-like layers which are further constructed into a 3D open framework, where hydrogen bonds play as the bridges between the adjacent 2D layers. Luminescent properties of complex 1 showed selectivity for $Hg^{2+}$ ion.

Sulfur Dioxide, Mineral Contents and Physicochemical Properties Generated during Manufacture of Bamboo Salt (죽염 제조공정에 따른 이산화황, 미네랄 함량 및 이화학적 특성)

  • Kim, Hag-Lyeol;Lee, Seong-Jae;Lee, Jung-Hee;Kim, In-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.8
    • /
    • pp.1248-1256
    • /
    • 2014
  • The purpose of this study was to investigate the mechanisms of behind $SO_2$ formation and elevated cause of reducing power in purple bamboo salt (PBS) along with an analysis of physicochemical properties, content of sulfur compounds, oxidation reduction potential (ORP), mineral contents of salt type (MSS, mudflat solar salt; BS, bamboo salt), and addition of raw bamboo (RB). $SO_2$ content of 630 ppm was detected in PBS. $SO_2$ was not detected in MSS, BS, or RB, whereas $SO_2$ (782 ppm) from $K_2SO_4$ was detected after heating a NaCl, KCl, $MgCl_2$, $MgSO_4$, MgO, $CaCl_2$, $K_2SO_4$, and $FeSO_4$ with RB. $SO_2$ content of BS increased with baking time, and it originated from BSRB1 (13.88 ppm) to BSRB4 (109.13 ppm). $SO_3{^{2-}}$ originated only from MSSRB4 and BSRB2~BSRB4. Sulfate ion content decreased along with increasing $SO_2$ and sulfite ion contents. ORP increased with baking time of MSS and BS, and it was present at higher levels in BSRB4 (-211.40 mV) of BS than MSS. Insoluble content was higher in BS than MSS. Further, Ca, K, and Mg ion contents decreased in MSS and increased in BS with baking time. BSRB4 had 1.4 fold higher levels of Ca, 1.5 fold higher levels of Mg, and 1.8 fold higher levels of K than BS. Li, Al, Mn, Fe, and Sr in MSS as well as Al, Fe, and Ni in BS increased with baking time. Anions (Cl, $NO_3$, and Br) and heavy metals (Pb, Cd, Hg, and As) between MSS and BS were not significantly different. These results suggest that the reducing power of BS was due to $SO_2$ and sulfite ion. To increase the amounts of these compounds and reducing power, higher melting temperature and longer baking time are necessary along with BS, which is created by the addition of RB to roasted salt.

Purification and Characterization of Chitinolytic Enzymes Produced by Aeromonas sp. J-5003

  • Choi Yong Un;Kang Ji Hee;Lee Myung Suk;Lee Won Jae
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • Chitinase and chitobiase produced by Aeromonas sp. J-5003 were purified and characterized. The chitinase was purified to 19.4 folds by gel chromatography and ion-exchange chromatography with the overall yield of $2.2\%$ and the specific activity of 93.1 unit/mg. The purified enzyme showed a single band on SDS-PAGE with MW 54kDa. The optimum pH and temperature of the purified chitinase were 7.0 and $37^{\circ}C$, respectively, and this enzyme stable in the range of pH 6.0 to 10.0 below $37^{\circ}C$. $Mg^{2+},\;Ca^{2+}\;and\;Na^+$ slightly stimulated the chitinase activity. However, $Hg^{2+}\;and\;Fe^{3+}$ inhibited chitinase activity. The chitobiase was purified by Sephacryl HR-l00 gel chromatography and DEAE-Sephadex A-50 ion-exchange chromatography with 33.5 purification folds and $4.3\%$ yield. The purified enzyme showed a single band with MW 63 kDa. The optimum pH and temperature of the purified chitobiase were 7.0 and $37^{\circ}C$, respectively. And this enzyme was stable in the range of pH 6.0 to 9.0 and at the temperature below $37^{\circ}C$. The enzyme activity was increased by $Mn^{2+}$, but it was inhibited by $Ag^+$.

A New Rhodamine B Derivative As a Colorimetric Chemosensor for Recognition of Copper(II) Ion

  • Tang, Lijun;Li, Fangfang;Liu, Minghui;Nandhakumar, Raju
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3212-3216
    • /
    • 2010
  • A new rhodamine-based sensor 1 was designed and synthesized by incorporating rhodamine B and benzimidazole moieties. Sensor 1 exhibits high selectivity and sensitivity to $Cu^{2+}$ in $CH_3CN$-water solution (HEPES buffer, pH = 7.0) with an obvious color change from colorless to pink. Other metal ions such as $Hg^{2+}$, $Ag^+$, $Pb^{2+}$, $Sr^{2+}$, $Ba^{2+}$, $Cd^{2+}$, $Ni^{2+}$, $Co^{2+}$, $Fe^{2+}$, $Mn^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $Ce^{3+}$, $Mg^{2+}$, $K^+$ and $Na^+$ had no such color change and have no significant influence on $Cu^{2+}$ recognition process. The interaction of $Cu^{2+}$ and sensor 1 was proven to adopt a 1:1 binding stoichiometry and the recognition process is reversible.

Purification and Characterization of Mouse Liver Rhodanese

  • Lee, Chul-Young;Hwang, Jae-Hoon;Lee, Young-Seek;Cho, Key-Seung
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.170-176
    • /
    • 1995
  • Rhodanese from mouse liver was purified to near homogeneity by ammonium sulfate precipitation, CM-Sephadex ion exchange, hydroxyapatite and Sephacryl S-200-HR gel filtration chromatographies with a purification of 776 folds. The molecular weight was determined by Sephadex G-150 gel filtration and found to be 34.8 KDa. SOS-PAGE showed molecular weight 34 KDa and two identical subunits splitting by aging for 3 weeks at $-70^{\circ}C$ the molecular weight of which was 17 KDa. The optimal pH of enzyme activity was 9.4 and the pI value of the enzyme was 6.6. Rhodanese showed the optimal reaction temperature of $25^{\circ}C$ and near linear increasing pattern until 10 min. incubation. $K_m$ values of rhodanese for KCN and $Na_{2}S_{2}O_{3}$ as substrates were 12.5 mM and 8.3 mM, respectively. Rhodanese activity was inhibited by more than 70% at a concentration of 100 ${\mu}M$ of $Ni^{2+}$, $Zn^{2+}$, $Cd^{2+}$, $Hg^{2+}$ and $Cu^{2+}$. Other metal ions, such as $Mn^{2+}$, $Mg^{2-}$, $Ca^{2+}$, and $Fe^{2+}$ showed no effect on rhodanese activity.

  • PDF

Purification and some Properties of Keratinolytic Protease Produced by Pseudomonas sp. KP-364. (Pseudomonas sp. KP-364가 생산하는 Keratinolytic Pretense의 정제 및 성질)

  • 전동호;강상모;권태종
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.224-229
    • /
    • 2003
  • A keratinolytic protease was purified from the culture medium of Pseudomonas sp. KP-364 by use of an assay of the hydrolysis of feather keratin. Membrane ultrafiltration and DEAE-cellulose ion-exchange resin and Sephadex G-150 gel chromatographies were used to purify the enzyme. The specific activity of the purified keratinolytic protease relative to that in the original medium was approximately 72-fold high. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Sephadex G-150 chromatography indicated that the purified keratinolytic protease is monomeric and has a molecular weight of 36 kDa. The optimal pH and temperature of the keratinolytic protease activity were 6.6 and 37 C, respectively, and the keratinolytic protease was relatively stable at pH value from 3.0 to 10.0 at 37 C for 1hour. The keratinolytic protease was inhibited by EDTA and EGTA, indicating that the keratinolytic protease was a kind of metalloprotease that require Li+ for cofactor.

Presence of Rhodanese in the Cytosolic Fraction of the Fruit Bat (Eidolon helvum) Liver

  • Agboola, Femi Kayode;Okonji, Raphael Emuebie
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.275-281
    • /
    • 2004
  • Rhodanese was isolated and purified from the cytosolic fraction of liver tissue homogenate of the fruit bat, Eidolon helvum, by using ammonium sulphate precipitation and CM-Sephadex C-50 ion exchange chromatography. The specific activity was increased 130-fold with a 53% recovery. The $K_m$ values for KCN and $Na_2S_2O_3$ as substrates were $13.5{\pm}2.2\;mM$ and $19.5{\pm}0.7\;mM$, respectively. The apparent molecular weight was estimated by gel filtration on a Sephadex G-100 column to be 36,000 Da. The optimal activity was found at a high pH (pH 9.0) and the temperature optimum was $35^{\circ}C$. An Arrhenius plot of the heat stability data consisted of two linear segments with a break occurring at $35^{\circ}C$. The apparent activation energy values from these slopes were 11.5 kcal/mol and 76.6 kcal/mol. Inhibition studies on the enzyme with a number of cations showed that $Mg^{2+}$, $Mn^{2+}$, $Ca^{2+}$, and $Co^{2+}$ did not affect the activity of the enzyme, but $Hg^{2+}$ and $Ba^{2+}$ inhibited the enzyme.

Purification and Properties of Cyclodextrin Glucanotrnsferase Synthesizing $2-O-{\alpha}-D-Glucopyranosyl{\;}_{L}-Ascorbic$ Acid from Paenibacillus sp. JB-13

  • Bae, Kyung-Mi;Kim, Sung-Koo;Kong, In-Soo;Jun, Hong-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.242-250
    • /
    • 2001
  • A Gram-positive bacterium (strain JB-13) that was isolated from soil as a producer of cyclodextrin glucanotransferase (CGTase) [EC 2.4.1.19] was identified as Panibacillus sp. JB-13. This CGTase could catalyze the transglucosylation reaction from soluble starch to L-ascorbic acid (AA). A main product formed by this enzyme with ${\alpha}-glucosidase$ was identified as $2-O-{\alpha}-D-glucopyranosyl{\;}_{L}-ascorbic$ acid (AA-2G) by the HPLC profile and the elemental analysis. CGTase was purified to homogeneity using ammonium sulfate fractionation, ion-exchange chromatography on DEAE-Seohadex A-50, and gel chromatography on Sephacryl S-200HR. The molecular weight was determined to be 66,000 by both gel chromatography and SDS-PAGE. The isoelectric point of the purified enzyme was 5.3. The optimum pH and temperature was PH 7.0 and $45^{\circ}C$ respectively. The enzyme was stable in the range of pH 6-9 and at temperatures of $75{\circ}C$ or less in the presence of 15 mM ${CaCl_2}.\;{Hg^2+},\;{Mn^+2},{Ag^+},\;and\;{Cu^2+}$ all strongly inhibited the enzyme's activity.

  • PDF

Purification and characterization of an alkaline protease produced by a xanthomonas sp. YL-37

  • Lee, Chang-Ho;Kim, Hee-Sik;Seok, Kwon-Gi;Oh, Hee-Mock;kang sang mo;Kwon, Tae-Jong;Yoon, Byung-Dae
    • Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.115-119
    • /
    • 1995
  • The alkaline protease of Xanthomonas sp. YL-37 has been purified, and the properties of the enzyme investigated. The alkaline protease of Xanthomonas sp. YL-37 was purified form crude enzyme by ammonium sulfate fractionation, CM-cellulose ion exchange chromatography, and Sephadex G-100 gel filtration. Through the series of chromatographies, the enzyme was purified to homogenecity with specific activity of 4.23 fold higher than that of the crude broth. The molecular weight of the purified protease has been estimated to be 62 KDa on SDS-polyacrylamide gel electrophoresis. The optimal pH and temperature for alkaline protease activity were 11.0 and 50.deg.C, respectively. The enzyme was stable between pH 5.0 and 10.0 and up to 50.deg.C. Enzyme activity was lost up to 50% on heating at 70.deg.C for 30 minutes. The activity of alkaline protease was inhibited by Cu$\^$2+/, Zn$\^$2+/, Hg$\^$2+/, PMSF, and activated by Mn$\^$2+/ and Ca$\^$2+/. The $K_{m}$ value for casein as a substrate was 4.0 mg/ml.

  • PDF

Purification and Characterization of the Intracellular Alginase from Vibrio sp. AL-145 (알긴산 분해균 Vibrio sp. AL-145가 생산하는 균체내 효소의 정제 및 특성)

  • Joo, Dong-Sik;Lee, Jung-Suk;Park, Jung-Je;Cho, Soon-Yeong;Ahn, Chang-Bum;Lee, Eung-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.432-438
    • /
    • 1995
  • The intracellular alginase from Vibrio sp. AL-145 was purified by ion chromatography on DEAE-Cellulose column, Q-Sepharose column, and gel filtration on Sephadex G-100 column. The optimum pH and temperature for the activity of the purified intracellular enzyme were 8.0 and 37$\circ$C, respectively. The enzyme was stable at the pH range of 7.5-8.5, and at 30$\circ$C for 30 min. The molecular weight of the intracellular enzyme was estimated to be about 23, 000 daltons by SDS-polyacrylamide gel electrophoresis. NaCl was required for enzyme activity and the optimum concentration was 0.5 M. The activity of intracellular enzyme was inhibited by Co$^{2+}$, Hg$^{2+}$, Zn$^{2+}$, 0-phenanthroline, $\rho$-CMB, EDTA and iodoacetate, and stimulated by Ca$^{2+}$, L-cysteine and 2-mercaptoethanol. This enzyme was an alginase specifically degrading alginic acid.

  • PDF