• Title/Summary/Keyword: $He^+$ ions

Search Result 86, Processing Time 0.032 seconds

Preparation and Characterization of Sulfated TiO2/zeolite Composite Catalysts with Enhanced Photocatalytic Activity

  • Zhao, Yuan;Li, JingXiu;Wang, Ling;Hao, Yanan;Yang, Lin;He, Pingting;Xue, JianJun
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850117.1-1850117.11
    • /
    • 2018
  • Sulfated $TiO_2$ nanoparticles were successfully immobilized on zeolite through improving hydrolysis-deposition method. Microstructure, crystallization, surface state and surface area of composite catalysts were characterized by SEM, XRD, FTIR spectra, XPS and BET and the photocatalytic activity was evaluated by degradation of methyl orange under UV irradiation. We optimized these factors ($SO^{2-}_4$ ions, calcination temperature and loading amount of sulfated $TiO_2$) on photocatalytic activity and crystallization of composite photocatalysts. The results indicated that the $SO^{2-}_4$ ions are successfully immobilized on the surface of $TiO_2$, and sulfated $TiO_2$/zeolite show the highest photocatalytic activity for methyl orange at the $[SO^{2-}_4 ]/[Ti^{4+}]$ molar rate of 1:1, calcination temperature of $600^{\circ}C$ for 2 h, and sulfated $TiO_2$ loading amount of 40%, respectively.

Secondary fragments of proton and helium ion beams in High-Density Polyethylene phantom: A Monte Carlo simulation study

  • M. Arif Efendi;Chee Keat Ying
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1754-1761
    • /
    • 2024
  • In hadrontherapy, secondary fragments are generated by nuclear interactions of the incident heavy ion beam with the atomic nuclei of the target. It is important to determine the yield of production and the dose contribution of these secondary fragments in order to determine the radiobiological effectiveness more accurately. This work aims to fully identify the secondary fragments generated by nuclear interactions of proton and helium (4He) ion beams in a High-Density Polyethylene (HDPE) target and to investigate the dose contributions by secondary fragments. Incident protons with energies of 55.90 MeV and 105.20 MeV and helium ions with energies of 52.55 MeV/u and 103.50 MeV/u in the HDPE phantom have been investigated by the means of Geant4 Monte Carlo (MC) simulations. Simulated results were validated using NASA Space Radiation Laboratory (NSRL) Bragg curves experimental data. The results showed that the dose contribution of secondary fragments deriving from helium ion beams is three times higher than in the case of proton beams. This is due to a higher production of nuclear fragments in the case of helium ion beams. This work contributes to a better understanding of secondary fragments generated by protons and helium ions in the HDPE target.

Hydrogeochemistry and Origin of $CO_2$ and Noble Gases in the Dalki Carbonate Waters of the Chungsong Area (청송 달기탄산약수의 수리지화학과 탄산 및 영족기체 기원)

  • Jeong, Chan-Ho;Kim, Kyu-Han;Nagao, Keisuke
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.123-134
    • /
    • 2012
  • Hydrochemical analyses, carbon isotopic (${\delta}^{13}C_{DIC}$) analyses, and noble gas isotopic ($^3He/^4He$ and $^4He/^{20}Ne$) analyses of the Dalki carbonate waters in the Chungsong area were carried out to elucidate their hydrochemical composition and to determine the source of $CO_2$ gas and noble gases. The carbonate waters have a pH of between 5.93 and 6.33, and an electrical conductivity 1950 to $3030{\mu}S/cm$. The chemical composition of all carbonate waters was Ca(Mg)-$HCO_3$, with a high Na content. The contents of Fe, Mn, and As in some carbonate waters exceed the limit stipulated for drinking water. The concentrations of major ions are slightly higher than those reported previously. The ${\delta}^{13}C_{DIC}$ values range from -6.70‰ to -4.47‰, indicating that the carbon originated from a deep-seated source. The $^3He/^4He$ and $^4He/^{20}Ne$ ratios vary from $7.67{\times}10^{-6}$ to $8.38{\times}10^{-6}$ and from 21.32 to 725.7, respectively. On the $^3He/^4He$ versus $^4He/^{20}Ne$ diagram, the noble gas isotope ratios plot in the field of a deep-seated source, such as mantle or magma. We therefore conclude that $CO_2$ gas and noble gas in the Dalki carbonate waters originated from a deep-seated source, rather than an inorganic $CO_2$ origin as suggested in a previous study.

Increased Microbial Resistance to Toxic Wastewater by Sludge Granulation In Upflow Anaerobic Sludge Blanket Reactor

  • Bae, Jin-Woo;Rhee, Sung-Keun;Kim, In S.;Hyun, Seung-Hoon;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.901-908
    • /
    • 2002
  • The relationship between the layered structure of granules in UASB reactors and microbial resistance to toxicity was investigated using disintegrated granules. When no toxic materials were added to the media, the intact and disintegrated granules exhibited almost the same ability to decrease COD and to produce methane. However, when metal ions and organic toxic chemicals were added to a synthetic wastewater, he intact granules were found to be more resistant to toxicity than the disintegrated granules, as determined by the methane production. The difference in resistance between the intact and disintegrated granules was maximal, with toxicant concentrations ranging from 0.5 mM to 2 mM for trichloroethylene with toluene and 5 mM to 20 mM for metal ions (copper, nickel, zinc. chromium, and cadmium ions). The augmented COD removal rate by granulation compared to disintegrated granules was also measured in the treatment of synthetic and real wastewaters; synthetic wastewater, $-2.6\%$; municipal wastewater, $2.8\%$; swine wastewater, $6.4\%$; food wastewater, $25.0\%$; dye works wastewater, $42.9\%$; and landfill leachate, $61.8\%$. Continuous reactor operation also demonstrated that the granules in the UASB reactor were helpful in treating toxic wastewater, such as landfill leachate.

Ion Beam Modified ppolyimide: A Study of the Irradiation Effect

  • Lee, Y.S.;Lim, K.Y.;Chung, Y.D.;Lee, K.M.;Choi, B.S.;Whang, C.N.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.132-132
    • /
    • 1998
  • Ion bombardment in the keV range is known to induce drastic chemical modifications in organic and inoranic molecular comppounds. A degrading effects in orgainc materials such as the release of ppolymer compponents and the chemistry of the iradiation pprocess have been observed. The work to be described was carried out in order to understand the irradiation effect better. The sampple(ppolyimide : Kappton ) Were irradiated by Ar+, Ne+, H+ ions and electrons (3 keV) to fluence ranging from ~1$\times$1015 to ~1$\times$1017 ions/$cm^2$ at room tempperature. The impplant was usually rastered over an area of a few $cm^2$ . These ion impplantation were carried out in an electron sppectrometer ESCA 5700 (ppHI Ltd) at a residual gas ppressure of ~5$\times$10-10 Torr. X-ray pphotoelectron sppectroscoppy(XppS) measurements were made using a monochromatized Al Ka(1486.6 eV) excitation source. The pphotoemitted electrons were detected by hemisppherical analyser with a ppass energy of 23.5 eV. Core-level binding energies were referenced to the Fermi level. To avoid the charging effect it was used the neutralizer. We studied the irradiation effects on ppolyimide with Ar+, Ne+, He+ ions and electrons by XppS which 추 pprovide detailed information concerning the bonding-induced changes.

  • PDF

Influence of Inorganic Ions and pH on the Photodegradation of 1-Methylimidazole-2-thiol with TiO2 Photocatalyst Based on Magnetic Multi-walled Carbon Nanotubes

  • Jiang, Yinhua;Luo, Yingying;Lu, Ziyang;Huo, Pengwei;Xing, Weinan;He, Ming;Li, Jiqin;Yan, Yongsheng
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.76-82
    • /
    • 2014
  • 1-Methylimidazole-2-thiol, as a kind of mercaptans, is a typical organic pollutant which has not been efficiently removed. In this study, titanium dioxide ($TiO_2$) photocatalyst based on magnetic multi-walled carbon nanotubes (MWCNTs) was synthesized via hydrothermal and sol-gel methods. The as-prepared photocatalyst was extensively characterized by X-ray diffraction (XRD), X-ray energy diffraction spectrum (EDS), transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectra, UV-Vis diffuse reflectance spectra (UV-vis DRS) and vibrating sample magnetometer (VSM). This photocatalyst of $TiO_2$/$Fe_3O_4$/MWCNTs was proved to exhibit high photocatalytic efficiency and the photodegradation rate could reach nearly 82.7% for the degradation of 1-methylimidazole-2-thiol under ultraviolet irradiation. In addition, the results demonstrated that inorganic ions had a negative impact on photodegradation of 1-methylimidazole-2-thiol to varying degrees. Moreover, pH had a great and complex effect on photocatalytic degradation of 1-methylimidazole-2-thiol under ultraviolet irradiation.

Preparation and Characterization of Casein Nanoparticles with Various Metal Ions as Drug Delivery Systems (다양한 금속 이온을 이용한 카세인 단백질 나노입자 형성 및 약물 전달체 특성 연구)

  • Minju Kim;Seulgi Lee;Joon Sig Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.121-125
    • /
    • 2023
  • Casein is a milk protein and one of the most important nutrients in milk. The composition is over 80% in cow's milk and about 20~45% in human's milk. Casein is highly biocompatible and biodegradable, so it has been studied for various biomedical materials applications as well as drug delivery systems. It is widely known that casein can be prepared as nanoparticles in the presence of the Ca2+ metal ion. Because casein is amphiphilic, hydrophobic drugs could be loaded inside to form a protein-based drug delivery system. In this study, we studied the optimum conditions for casein nanoparticle formation using natural metal ions present in the body, such as calcium, magnesium, zinc, and iron. It was confirmed that nanoparticles have a uniform size of around 150 nm and negative zeta potential values. In addition, it was demonstrated that casein nanoparticles have a cell viability of more than 80% and efficient intracellular uptake properties using confocal microscopy. From the results, it was also shown that the casein nanoparticles prepared using various metal ions have the potential to be biocompatible drug delivery carriers.

Structure Analysis of BaTiO3 Film on the MgO(100) Surface by Impact-Collision Ion Scattering Spectroscopy (직충돌 이온산란 분광법을 사용한 MgO(100) 면에 성장된 BaTiO3막의 구조해석)

  • Hwang, Yeon;Lee, Tae-Kun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.62-67
    • /
    • 2006
  • Time-of-flight impact-collision ion scattering spectroscopy (TOF-ICISS) using 2 keV $He^+$ ion was applied to study the geometrical structure of the $BaTiO_3$ thin film which was grown on the MgO(100) surface. Hetero-epitaxial $BaTiO_3$ layers were formed on the MgO(100) surface by thermal evaporation of titanium followed first by oxidation at $400^{\circ}C$, subsequently by barium evaporation, and finally by annealing at $800^{\circ}C$. The atomic structure of $BaTiO_3$ layers was investigated by the scattering intensity variation of $He^+$ ions on TOF-ICISS and by the patterns of reflection high energy electron diffraction. The scattered ion intensity was measured along the <001> and <011> azimuth varying the incident angle. Our investigation revealed that perovskite structured $BaTiO_3$ layers were grown with a larger lattice parameter than that of the bulk phase on the MgO(100) surface.

Thermally-Induced Atomic Mixing at the Interface of Cu and Polyimide

  • Koh, Seok-Keun;Choi, Won-Kook;Song, Seok-Kyun;Kook D. Pae;Jung, Hyung-Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.3
    • /
    • pp.316-321
    • /
    • 1994
  • Rate of mixing of Cu particles to polyimide substrate at interfaces under different thermal treatments was analyzed by Rutherford Backscattering spectroscopy using 2.0 MeV He+ ions. T he mixing rate was a function of annealing temperature and time and was constant at afioxed temperature. The amount of mixing increased linearly with time and the mixing rate increased with temperature. The activation energy for interface mixing between Cu and polyimide was 2.6 kcal/mol. The X-ray studies showed the Cu(111) plane peak changed with annealing time at fixed temperature. The mixing of Cu to polyimide was explained with segmental motion of PI chain and with interaction between functional group of the chain and metal electron donor. The comparisons were made bewteen the mixing induced by ion irradiation and by thermal treatment. The various factors affecting the interface mixing are discussed.

  • PDF

Characteristics of Low-power Microwave Induced Plasma Emission Spectrum and Detection of $CO_2$ (저출력 마이크로파 유도 플라스마 방출스펙트럼의 특성과 $CO_2$ 분석)

  • Noh, Seung Man;Park, Chang Joon;Kim, Young Sang
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.4
    • /
    • pp.235-242
    • /
    • 1996
  • A surfatron-type microwave induced plasma (MIP) cavity has been constructed, which can be easily interfaced with a gas chromatograph. Various plasma gases such as He, Ar and N2 were used to generate the MIP and small amounts of CO2 gases were injected through the MIP to obtain characteristic spectrum of each plasma gas and to study feasibility of the MIP as a soft ionization source. Since He and Ar plasmas have high metastable state energy, it was not possible to detect sample gas in molecular state. With N2 plasma, however, a strong emission of molecular ions could be detected owing to its low metastable state energy.

  • PDF