• Title/Summary/Keyword: $H_2SO_4$

Search Result 4,741, Processing Time 0.036 seconds

Stripping of Fe(III) from the Loaded Mixture of D2EHPA and TBP with Sulfuric Acid Containing Reducing Agents

  • Liu, Yang;Nam, Sang-Ho;Lee, Manseung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2109-2113
    • /
    • 2014
  • Solvent extraction of Fe(III) from chloride solution by using a mixture of D2EHPA (Di-(2-ethylhexyl)-phosphoric acid) and TBP (Tri-butyl phosphate) and the reductive stripping of Fe(III) from the loaded organic were investigated. Quantitative extraction of Fe(III) from the solution (Fe concentration = 90 g/L) was accomplished in two cross-current extraction stages by using the mixture of D2EHPA and TBP. In order to facilitate the stripping efficiency, a reductive stripping method was employed by using $H_2SO_3$ or $Na_2SO_3$ as a reducing agent. The addition of $H_2SO_4$ into reducing agents led to improvement in the stripping efficiency while high concentration acid would suppress it. Both of the mixtures of $H_2SO_4+H_2SO_3$ and $H_2SO_4+Na_2SO_3$ showed good efficiency for the stripping of Fe(III), while the latter was recommended as the stripping solution based on the economics and experimental condition.

Production and Characteristics of Environment-Friendly Antimicrobial Substance by Pseudomonas aeruginosa EL-KM (Pseudomonas aeruginosa EL-KM에 의한 환경친화적 항균물질의 생산과 특성)

  • 이상준;이경민;이오미;차미선;박은희;박근태;손홍주
    • Journal of Environmental Science International
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 2002
  • An antimicrobial substance-producing microorganism was isolated from soil samples. Based of the taxonomic characteristics of its morphological, cultural, physiological properties and 16s rRNA sequence alignment, this microorganism was identified as Pseudomonas aeruginosa, and we named Pseudomonas aeruginosa EL-KM. The optimal culture condition for production of antimicrobial substance was 1% mannitol, 0.4% yeast extract, 0.5% Nacl, 0.2% $K_2SO_4$, 100$\mu$M $MgSO_4$.$7H_2O$, 10$\mu$M $CaCl_2$.$2H_2O$, 1$\mu$M $FeSO_4$.$7H_2O$, 1$\mu$M $MnSO_4$.$4-5H_2O$, initial pH 7 and 200 rpm at 3$0^{\circ}C$. The purification of the antimicrbial substance was performed by silica gel column chromatographys, and fraction with TLC $R_f$ 0.77 value represented good antimicrobial activity. The crude antimicrbial substance was stable within a pH range of 3-10 and temperature range of 4$^{\circ}C$-121$^{\circ}C$ autoclaving. This crude antibacterial substance acted as bacteriolytic agent against Vibrio cholerae non-Ol ATCC 25872, and also exhibited excellent properties, when the substance was demonstrated against many other gram-positive, gram-negative bacteria, yeast and fungi.

Bench-scale Test of Sulfuric Acid Decomposition Process in SI Thermochemical Cycle at Ambient Pressure (SI 열화학싸이클 황산분해공정의 Bench-scale 상압 실험)

  • Jeon, Dong-Keun;Lee, Ki-Yong;Kim, Hong-Gon;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 2011
  • The sulfur-iodine (SI) thermochemical water splitting cycle is one of promising hydrogen production methods from water using high-temperature heat generated from a high temperature gas-cooled nuclear reactor (HTGR). The SI cycle consists of three main units, such as Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition. The feasibility of continuous operation of a series of subunits for $H_2SO_4$ decomposition was investigated with a bench-scale facility working at ambient pressure. It showed stable and reproducible $H_2SO_4$ decomposition by steadily producing $SO_2$ and $O_2$ corresponding to a capacity of 1 mol/h $H_2$ for 24 hrs.

Effect of Limestone Powder on Hydration of $C_{3}A-CaSO_{4}$ $\cdot$ $2H_{2}O$ system ($C_3A-CaSO_4\cdot2H_2O$ 계의 수화반응에 미치는 석회석미분말의 영향)

  • Lee Jong-Kyu;Chu Yong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.349-352
    • /
    • 2005
  • In this work, effects of limestone powder on hydration of $C_3A-CaSO_4\cdot2H_2O$ system was discussed based on the XRD Quantitative analysis, and the possibility of Delayed Ettringite Formation was also discussed. The early hydration of $C_{3}A$ was delayed by addition of $CaCO_{3}$ powder. The delay effect was enhanced by increasing of $CaCO_{3}$ content and finer powder of $CaCO_{3}$ addition. After consumption of $CaSO_4\cdot2H_2O$, the reaction of $CaCO_{3}$ is started. Delayed Ettringite Formation would take place because monosulfoaluminate is not stable in presence of $CaCO_{3}$. In order to prevent the delayed ettringite formation in $C_3A-CaSO_4\cdot2H_2O-CaCo_3$ system, the reduction of monosulfoaluminate formation is important. Therefore, by increasing the amount of $CaCO_{3}$ addition and finer $CaCO_{3}$ powder addition, the delayed ettringite formation can be prevented.

  • PDF

Cultural Conditions of Exopolysaccharide KS-1 Produced by Bacillus polymyxa KS-1 (Bacillus polymyxa KS-1에 의한 다당류 KS-1 생산의 발효 조건)

  • 권기석;윤병대주현규
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.441-448
    • /
    • 1995
  • Optimized fermentation medium and cultural conditions for the production or exopolysaccharide KS-1 with Bacillus polymyxa KS-1 was following as; 30g g1ucose, 2.59g yeast extract, $2.5g KH_2PO_4, 0.5g NaCl, 0.3g MgSO_4.7H_20, 0.1g CaC0_3 0.05g, FeSO_4.7H_2O, and 0.05g MnS0_4 . 4H_20in 1 liter distilled water. The exopolysaccharide production was influenced by the by the temperature and pH, the optimal conditions for the production of exopolysaccharide KS-1 seemed to be $30^{\circ}C$ and pH 7.0, respectively. About $10.3g/\ell$ of maximum exopolysaccharide was obtained al the initial pH 7.0, $30^{\circ}C$, 2vvm of aeration rate and 400 rpm of impeller speed in a jar fermentor.

  • PDF

A Change of the Stream Water Quality by Forest Land Use (임지이용이 계류의 수질변화에 미치는 영향)

  • Ma, Ho-Seop;Goo, So-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.6
    • /
    • pp.43-48
    • /
    • 2002
  • This study was carried out to clarify the change characteristics of stream water quality by land-use of forest from July to September, 2000 in three stands(Pinus densiflora, Castanea crenata (I), Castanea crenata (II) stand) of Jeongpyeong-ri, Jinju-si, Gyeongnam. The mean pH of rainfall results in acid rain of 5.3. The pH of stream water in three stands was high in order of Pinus densiflora (pH 6.59), Castanea crenata (II)(pH 6.53) and Castanea crenata (I) stand(pH 6.47). The electrical conductivity of stream water was high in order of Castanea crenata (I), Pinus densiflora and Castanea crenata (II) stand. Cations contents of three stands in stream water were high in order of $Ca^{2+}$, $Na^{2+}$, $Mg^{2+}$, $K^+$ and ${NH_4}^+$. But anions of stream water in Pinus densiflora stand and Castanea crenata (II) stand were high in order of ${SO_4}^{2-}$, $Cl^-$ and ${NO_3}^-$. In Castanea crenata (I) stand cations of stream water were high in order of ${NO_3}^-$, ${SO_4}^{2-}$ and $Cl^-$. The level of pH, ${NH_4}^+$, ${NO_3}^-$, $Cl^-$ and ${SO_4}^{2-}$ of stream water in Pinus densiflora stand and Castanea crenata (II) stand reached within the level of domestic use standard for drinking water But the level of ${NO_3}^-$ of stream water in Castanea crenata (I) stand was higher than that of domestic use standard. Therefore, non-point sources like forest watersheds which are fertilizer application lands should be taken to the appropriate mitigation measures.

Synthesis and Characterization of Molybdeum(V) Complexes (몰리브덴(V) 착물의 합성 및 특성에 관한 연구)

  • Kim, Il-Chool
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.254-260
    • /
    • 2001
  • The Mo(V) $di-{\mu}-oxo$ type [$Mo_{2}O_{4}(H_{2}O)_{2}L_{2}$] $SO_{4}$ complexes(L: 2,2'-dipyridyl,4,4'-ethylenedianlline) have been prepared by the reaction of $[Mo_{2}O_{4}(H_{2}O)_{6}]SO_{4}$ with a series of chelate ligands. These complexes are completed by two terminal oxygens arranged trans to one another and each ligand forms a chelate types. In $Mo_{2}O_{4}(H_{2}O)_{2}L_{2}$, two $H_{2}O$ coordinated at trans site of terminal oxygens. The prepared complexes have been characterized by elemental analysis, infrared spectra, $^{1}H$ nuclear magnetic resonance spectra, and thermal analysis(TG-DTA). In the potential range -0.00V to -1.00V at a scan rate of $50mVs^{-1}$, a cathodic peak at -0.81V ${\sim}$ -0.87V (vs SCE) and an anodic peak at -0.61V ${\sim}$ -0.63V (vs SCE) have been observed in aquous solution. We infer these redox are irreversible reaction.

Phase Separation Characteristics of Low Temperature Bunsen Reactions In Sulfur-Iodine Hydrogen Production Process (황-요오드 수소 제조 공정에서 저온 분젠 반응의 상 분리 특성)

  • Han, Sang-Jin;Lee, Kwang-Jin;Kim, Hyo-Sub;Kim, Young-Ho;Park, Chu-Sik;Bae, Ki-Kwang;Lee, Jong-Gyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.424-431
    • /
    • 2011
  • The Sulfur-Iodine(SI) thermochemical hydrogen production process consists of three sections, which are so called the Bunsen reaction section, the $H_2SO_4$ decomposition section and the HI decomposition section. In order to identify the phase separation characteristics in the reaction conditions with the high solubility of $SO_2$, we conducted the Bunsen reaction at the low temperatures, ranging from 283 to 298K, with the $I_2/H_2O$ molar ratios of 2.5/16.0 and 3.5/16.0. The molar ratios of HI/$H_2SO_4$ products obtained from low temperature Bunsen reactions were ca. 2, indicating that there were no side reactions. The amount of reacted $SO_2$ was increased with decreasing the temperature, while the amounts of unreacted $I_2$ and $H_2O$ were decreased. In the phase separation of the products, the amount of a $H_2SO_4$ impurity in $HI_x$ phase was increased with decreasing the temperature, though the temperature has little affected on HI and $I_2$ impurities in $H_2SO_4$ phase.

Microwave-assisted Preparation, Structures, and Photoluminescent Properties of [Ln(NO3)2(H2O)3(L)2](NO3)(H2O) {Ln=Tb, Eu;L=2-(4-pyridylium)ethanesulfonate, (4-pyH)+-CH2CH2-SO3-}

  • Zheng, Zhen Nu;Lee, Soon-W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1859-1864
    • /
    • 2011
  • Two lanthanide complexes, $[Ln(NO_3)_2(H_2O)_3(L)_2](NO_3)(H_2O)$ {Ln = Eu (1), Tb (2); L = 2-(4-pyridylium)-ethanesulfonate, $(4-pyH)^+-CH_2CH_2-SO_3^-)$}, were prepared from lanthanide nitrate and 4-pyridineethanesulfonic acid in $H_2O$ under microwave-heating conditions. Complexes 1 and 2 are isostructural, and the lanthanide metal in both complexes is coordinated to nine oxygen atoms. The pyridyl nitrogen in the ligand is protonated to give a zwitter ion that possesses an $NH^+$ (pyridyl) positive end and an $SO_3^-$ negative end. All O-H and N-H hydrogen atoms participate in hydrogen bonds to generate a two-dimensional (complex 1) or a three-dimensional network (complex 2). Complex 1 exhibits an intense red emission, whereas complex 2 exhibits an intense green emission in the solid state at room temperature.

Production Conditions and Characterization of ${\beta}$-Lactamase Inhibitor from Pseudomonas sp. X-8 (슈도모나스 sp. X-8의 베타락타마제 억제제의 생산 조건과 특성)

  • Kim, Kyoung-Ja;Kim, Tae-Sung
    • YAKHAK HOEJI
    • /
    • v.41 no.5
    • /
    • pp.658-665
    • /
    • 1997
  • Identification of a soil microorganism strain X-8, producer of ${\beta}$-lactamase inhibitor, based on its morphological, physiological, biochemical and chemotaxonomical characteristics was performed. The strain X-8 was identified as Pseudomonas sp. The beta-lactamase inhibitor produced by this strain was highly achieved in fermentation medium contained glucose 0.5%, urea 0.25%, $K_2HPO_4{\cdot}3H_2O\;0.5%,\;MgSO_4{\cdot}7H_2O\;0.5%,\;FeSO_4{\cdot}7H_2O\;0.01%,\;CuSO_4,\;ZnSO_4,\;MnSO_4\;0.02%$. The beta-lactamase inhibitor was not extracted by organic solvent such as n-butanol and ethyl acetate but remained in aqueous layer. The n-butanol extract showed antimicrobial activity against M. smegmatis. The ${\beta}$-lactamase inhibitor was stable at pH 7.0~8.0 and 4$^{\circ}C$ for 24h. The ${\beta}$-lactamase inhibitor was bound on ion exchanger Diaion WA-30 and HP-20 and eluted with 2N-$NH_4OH$ and acetone, respectively.

  • PDF