• Title/Summary/Keyword: $H_2S$ corrosion

Search Result 310, Processing Time 0.03 seconds

Oxidation of Polymers in Nonaqueous Solutions (비수용액 내에서 중합체의 산화)

  • Choi, Chil Nam;Yang, Hyo Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.2
    • /
    • pp.138-160
    • /
    • 2001
  • In this study we measured oxidation potentials and current densities for poly(vinylcholride) (PVC) and poly(carbonate)(PC) in nonaqueous solutions, in order to find out how corrosion (oxidation) potentials depend on temperature, pH, enzyme, or added salts. The Tafel's slopes were determined from the Tafel plots of polarization curves. The transfer coefficients (${\alpha}$) wre evaluated from the slope(1-${\alpha}$)nF/2.3 RT, and the electrode reactions appeared irreversible under all conditions.

  • PDF

Evaluaton of Corrosion-resistant Alloys for Safety Metal Filter of IGCC System (석탄가스 정제를 위한 safety filter 제작용 내식 합금의 평가)

  • 박영철;최주홍
    • Journal of Energy Engineering
    • /
    • v.10 no.2
    • /
    • pp.132-139
    • /
    • 2001
  • 석탄가스화 복합발전의 집진 공정에 사용하기 위한 금속제 safety filter의 재질 선정을 위하여 황화수소 가스 분위기에서 합금강의 부식 특성을 규명하였다. 사용 합금강은 SUS 310, SUS 316, Inconel 600과 Hastelloy X이다. 전기로 내에 설치된 지름 50mm의 qualtz 튜브 반응기에서 부식실험이 행하여졌다. 40$0^{\circ}C$부터 $700^{\circ}C$까지의 등은 조건에서 실험이 행하여졌고, 분위기 가스의 영향을 보기 위하여 H$_2$S 가스를 함유한 $N_2$(dry), $N_2$(saturation), $CO_2$(dry), 그리고 석탄가스 분위기에서 실험하였다. 부식 생성물을 파악하기 위하여 X-ray 회절기와 주사전자현미경 분석이 함께 이루어졌다. 1.7% H$_2$S, $600^{\circ}C$ 이하 온도 조건에서는 니켈계 내식강 중 Hastelloy X와 철계 내식강 중 SUS 310 등 고크롬 합금강이 IGCC 용 필터 소재 금속으로서 높은 내부식성을 나타내었다. 0.3%~4.99% 황화수소 농도 범위에서 황화수소 농도 변화에 따라서 SUS 310의 경우 3~237mg/d$m^2$.day, Inconel 600의 경우 4~660mg/d$m^2$.day로 부식속도는 크게 증가되었다. 50$0^{\circ}C$, 석탄가스 분위기에서 부식속도는 SUS 310은 45mg/d$m^2$.day, SUS 316은 110mg/d$m^2$.day, Inconel 600은 576mg/d$m^2$.day, 그리고 Hastelloy X 는 140mg/d$m^2$.day로서 합금강 시편 중 SUS 310 합금강이 가장 우수한 내식성을 나타내었다. 부식 표면에는 황화니켈, 황화철 피막이 형성되었다.

  • PDF

Improving the Corrosion Resistance of Cold-Rolled Carbon Steel by Treatment with a Hybrid Organic/Inorganic Coating Solution (유/무기 하이브리드 코팅액에 의한 냉간압연강판의 내식특성)

  • Kim, Jung-Ryang;Choi, Chang-Min;Nam, Ki-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • In the past, a very popular way to reduce the corrosion rate of zinc was the use of chemical conversion layers based on $Cr^{+6}$. However, the use of chromium salts is now restricted because of environmental protection legislation. Previous research investigated the optimum corrosion resistance of galvanized steel treated with an organic/inorganic solution containing Si. The result showed that the optimum corrosion resistance occurred by heat treatment of $190^{\circ}C$ in 5 min. In this study, one organic and three hybrid organic/inorganic coating solutions were applied to cold-rolled (CR) carbon steel. The coatings were then evaluated for corrosion resistance under a salt spray test. The coating solutions examined in this study consisted of urethane-only, urethane-Si, urethane-Si-Ti, and urethane-Si-Ti-epoxy. The results of the 7 h salt spray test showed that the urethane-Si-Ti and urethane-Si-Ti-epoxy coating solutions had superior corrosion resistance on CR steel.

Evaluation of Resistance to Biochemical Corrosion by Simulation Test (시뮬레이션 시험에 의한 생화학적 부식 저항성 평가)

  • Kim, Gyu-Yong;Lee, Eui-Bae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.903-906
    • /
    • 2008
  • To analyze the growth of SOB (Thiobacillus novellus) and biochemical corrosion of concrete, simulation test method and device were developed. And two types of simulation tests were conducted according to a transplant method and a concentration of H2SO4. As a result, the SOB growth in distinct manners and antibiosis of specimen were observed. In the case of the specimens indirectly transplanted with SOB through culture solution submersion at a hydrogen sulfide level of 120ppm, the rapid activation of SOB and the resulting sulfuric acid production were observed. However, SOB were shown to grow rapidly and then die out in a relative short period of time. Meanwhile, in the case of the specimens directly transplanted with SOB at a hydrogen sulfide level of 50ppm, the long-term growth of SOB was possible, but the production of sulfuric acid by SOB did not progress. In the case of the antibiotic metal-mixed specimens, SOB with destroyed cell membranes and internal organizations were observed.

  • PDF

Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating (Vanadium-Boride코팅의 고온 내입자침식성 평가)

  • Lee, E.Y.;Kim, J.H.;Jeong, S.I.;Lee, S.H.;Eum, G.W.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.76-84
    • /
    • 2015
  • The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600~2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipments were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating.

Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy (Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구)

  • W. G. Seo;K. Thool;H. N. Lee;D. J. Yang;S. G. Park;S. H. Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

Surface Protection Obtained by Anodic Oxidation of New Ti-Ta-Zr Alloy

  • Vasilescu, C.;Drob, S.I.;Calderon Moreno, J.M.;Drob, P.;Popa, M.;Vasilescu, E.
    • Corrosion Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.45-53
    • /
    • 2018
  • A new 80Ti-15Ta-5Zr wt% alloy surface was protected by anodic oxidation in phosphoric acid solution. The protective oxide layer (TiO2, ZrO2 and Ta suboxides and thickness of 15.5 nm) incorporated $PO{_4}^{3-}$ ions from the solution, according to high resolution XPS spectra. The AFM analysis determined a high roughness with SEM detected pores (20 - 50 nm). The electrochemical studies of bare and anodically oxidized Ti-15Ta-5Zr alloy in Carter-Brugirard saliva of different pH values and saliva with 0.05M NaF, pointed to a nobler surface for the protected alloy, with a thicker electrodeposited oxide layer acting as a barrier against aggressive ions. The oxidized alloy significantly decreased corrosion current densities and total quantity of ions released into the oral environment in comparison with the bare one, at higher polarisation resistance and protective capacity of the electrodeposited layer. The impedance data revealed a bi-layered oxidation film formed by: a dense, compact, barrier layer in contact with the metallic substrate, decreasing the potential gradient across the metal/oxide layer/solution interface, reducing the anodic dissolution and a more permissive, porous layer in contact with the electrolyte. The open circuit potential for protected alloy shifted to nobler values, with thickening of the oxidation film signifying long-term protection.

The Application of Plasma Nitrocarburizing and Plasma Post Oxidation Technology to the Automobile Engine Parts Shafts (자동차 엔진부품용 Shaft에 플라즈마 산질화기술 적용)

  • Jeon, Eun-Kab;Park, Ik-Min;Lee, In-Sup
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.681-686
    • /
    • 2006
  • Plasma nitrocarburising and plasma post oxidation were performed to improve the wear and corrosion resistance of S45C and SCM440 steel by a plasma ion nitriding system. Plasma nitrocarburizing was conducted for 3h at $570^{\circ}C$ in the nitrogen, hydrogen and methane atmosphere to produce the ${\varepsilon}-Fe_{2-3}$(N, C) phase. Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at constant temperature of $500^{\circ}C$ for 1 hour. The very thin magnetite ($Fe_3O_4$) layer $1-2{\mu}m$ in thickness on top of the $15{\sim}25{\mu}m$ ${\varepsilon}-Fe_{2-3}$(N, C) compound layer was obtained by plasma post oxidation. A salt spray test and electrochemical testing revealed that in the tested 5% NaCl solution, the corrosion characteristics of the nitrocarburized compound layer could be further improved by the application of the superficial magnetite layer. Throttle valve shafts were treated under optimum plasma processing conditions. Accelerated life time test results, using throttle body assembled with shaft treated by plasma nitrocarburising and post oxidation, showed that plasma nitrocarburizing and plasma post oxidation processes could be a viable technology in the very near future which can replace $Cr^{6+}$ plating.

Evaluation of Tensile Property of Austenitic Alloys Exposed to High-Temperature S-CO2 Environment (고온 S-CO2 환경에 노출된 오스테나이트계 합금의 인장특성 평가)

  • Kim, Hyunmyung;Lee, Ho Jung;Jang, Changheui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1415-1420
    • /
    • 2014
  • Super-critical $CO_2$ ($S-CO_2$) Brayton cycle has been considered to replace the current steam Rankine cycle in Sodium-cooled Fast Reactor (SFR) in order to improve the inherent safety and thermal efficiency. Several austenitic alloys are considered as the structural materials for high temperature $S-CO_2$ environment.. Microstructural change after long-term exposure to high temperature $S-CO_2$ environment could affect to the mechanical properties. In this study, candidate materials (austenitic stainless steels and Alloy 800HT) were exposed to $S-CO_2$ to assess oxidation resistance and the change in tensile properties. Loss of ductility was observed for some austenitic stainless steels even after 250 h exposure. The contribution of $S-CO_2$ environment on such changes was analyzed based on the characterization of the surface oxide and carburization of the materials in which 316H and 800H showed different oxidation behaviors.

The influence of L-arginine as an additive on the compressive strength and hydration reaction of Portland cement

  • Yildiz, Mine Kurtay;Gerengi, Husnu;Kocak, Yilmaz
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.237-246
    • /
    • 2022
  • The concrete quality relies on general factors like preparation technique, uniformity of the compaction, amount and appropriateness of the additives. The current article investigates the impact of a well knows amino acid, L-arginine as an additive on water requirements, setting durations and characterization of various cement samples. Compressive strength tests of reference and L-arginine added cements at age of 2, 7 and 28 days were carried out according to TS-EN 196-1. Samples were blended by incorporating various amounts of L-arginine (25 ppm, 50 ppm and 75 ppm) in the cement water mixture which were tested with Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TG), scanning electron microscopy (SEM) and the energy-dispersive X-ray spectroscopy (EDS) on the 28th day. Results revealed that L-arginine does not affect the setting time, volume expansion of cement and water demands negatively; rather it imparts enhanced sustainability to the samples. It was determined that the highest value belonged to the 75L mortar with an increase of 2.6% compared to the reference sample when the compressive strengths of all mortars were compared on the 28th day. Besides, it has been observed that the development of calcium silicate hydrate or C-S-H gel, calcium hydroxide or CH and other hydrated products are associated with each other. L-arginine definitely has a contribution in the consumption of CH formed in the hydration process.