• Title/Summary/Keyword: $H_2S$ 흡착

Search Result 322, Processing Time 0.039 seconds

$H_2S$ Adsorption Characteristics and Property Analyses of Activated Carbon Adsorbent Impregnated with Basic Solutions (염기성용액으로 첨착시킨 활성탄의 물성분석 및 $H_2S$ 흡착특성)

  • Lee, Suk-Ki;Yim, Chang-Sun;Park, Yeong-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1011-1016
    • /
    • 2010
  • The $H_2S$ adsorption characteristics and property analyses of granular activated carbon adsorbent impregnated with basic solution such as NaOH, KOH, and $(CH_2CH_2OH)_2NH$ were investigated. The concentrations of NaOH and KOH reagent ranged over 1 to 5 M, The concentration of $(CH_2CH_2OH)_2NH$ was in the range of 0.1 to 1 M. Adsorption temperature($25{\sim}45^{\circ}C$) and adsorbate ($H_2S$) concentration (18.23 mg/L) were applied. The experimental results showed that the BET surface area of activated carbon impregnated with KOH decreases from $1,050\;m^2/g$ to $750\;m^2/g$, and the acidity of activated carbon impregnated with NaOH decreases from 0.541 meq/g-AC to 0 meq/g-AC, as the concentration of basic solution increases, while the pH of impregnated activated carbon increased from 9.54 to 10.94 for three basic solutions. It was also found that the $H_2S$ adsorption equilibrium capacity of activated carbon impregnated with NaOH, KOH, $(CH_2CH_2OH)_2NH$ increased with increasing temperature and $H_2S$ adsorption equilibrium capacity of the activated carbon impregnated with diethanolamine was much higher than other cases. At adsorption temperature of $45^{\circ}C$, the $H_2S$ adsorption equilibrium capacity of impregnated activated carbon was 2.0~3.3 times lager than that of pure activated carbon.

Adsorption and Degradation of Alkylbenzenesulfonate by Soils (Alkylbenzenesulfonate의 토양(土壤)에 의한 흡착(吸着)과 분해(分解))

  • Ha, Sang-Keon;Joo, Jin-Ho;Um, Myung-Ho;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.2
    • /
    • pp.169-175
    • /
    • 1988
  • A laboratory experiment was conducted to investigate the effects of pH, organic matters and anion on the adsorption and degradation of surfactant by different soils; Anmi series (limestone region), Gangseo series (alluvial soil). For this study, Alkyl Benzene Sulfonate (ABS ; Sodium Dodecylbenzenesulfonate) was used as a surfactant. The results were as follows: 1. Adsorption of ABS by soils was correlated positively with the equilibrium concentration of ABS in a soil suspension. (Anmi seris : r=0.9855, Gangseo series : r=0.9931). 2. Adsorption rate of ABS by soils was about 70% of the treated concentration ($600{\mu}g$ ABS/g soil) in a range of pH 4 to pH 5, and about 20% for pH 8. 3. Addition of electrolytes increased ABS adsorption by soils in a soil suspension; the higher concentration, the higher adsorption. But the influence among electrolytes was not significant. 4. Adsorption of ABS by soils was not affected by soil organic matter content in this experiment. 5. Degradation rate of ABS in a soil suspension was about 85% at $30^{\circ}C$, and about 10 to 15% at $10^{\circ}C$. Addition of sewage accelerated the degradation rate regardless of temperature and reached about 85% in a week.

  • PDF

A study on the Optimization of Sewage Sludge-based Adsorbent Carbonization Condition for Improving Adsorption Capacity of Hydrogen Sulfide (H2S) (황화수소(H2S) 흡착성능 증진을 위한 하수슬러지 기반 흡착제 탄화조건 최적화 연구)

  • Choi, Sung Yeol;Jang, Young Hee;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.765-771
    • /
    • 2018
  • In this study, the optimization of carbonization conditions in manufacturing processes was performed to improve the absorption performance of sewage sludge based sorbent used for treating $H_2S$ out of all odorous substances generated by various environmental facilities. Adsorbents applied were manufactured from the sewage treatment plant under different carbonization conditions, such as temperature and heating rate, and the correlation between the adsorption performance and physical properties of the adsorbents was verified. As a result, the adsorption performance of sludge at $900^{\circ}C$ with a heating rate of $10^{\circ}C/min$ was the best, and the SEM and BET analysis revealed that specific surface area and characteristics of pore (size, volume) were major parameters for the adsorption. In addition, the effect of K ions used for improving the adsorption performance of the optimum carbonization condition sorbent was insignificant for the sewage sludge based sorbent.

Adsorption and Oxidation of Polychlorinated Phenols onto Transition Metal Oxides (I). Adsorption Characteristics and Reductive Dissolution of ${\sigma}-MnO_2$(s) (전이금속산화물에 대한 다염소치환페놀류의 흡착과 산화 (제 1 보). ${\sigma}-MnO_2$(s)의 흡착특성과 환원성 용해)

  • Jong Hoon Yun;Jong Wan Lim;Heung Lark Lee;Sang Oh Oh;Sun Haing Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.226-232
    • /
    • 1991
  • Adsorption and oxidation of polychlorinated phenols by suspended ${\sigma}-MnO_2$ in aqueous solution have been studied. Of the proposed mechanism, adsorption reaction of chlorophenols onto ${\sigma}-MnO_2$(s) depended upon the pH of the solution and the concentration of chlorophenol. Adsorption isotherms showed a reasonably good fit to the Langmuir isotherm. From the pH dependence of adsorption partition coefficient and the linear relationship between octanol-water partition coefficient and adsorption partiton coefficient of chlorophenol, it is estimated that adsorption is dominated by its hydrophobicity. The rate of electron transfer reaction evaluated from the rate of reductive dissolution of ${\sigma}-MnO_2$(s) depended linearly upon the concentration of chlorophenol and the pH of medium. Observed rate constants ($K_0$) of the meta-substituted chlorophenol were lower than that of the ortho-or para-chlorophenol because of resonance effect of chlorophenoxy radical. It is indicated that this radical is produced in the adsorption process and the electron transfer reaction is rate determining.

  • PDF

The Behavior of Microamounts of Americium in Aqueous Solution (수용액중 급위량 Am의 거동)

  • Jae, Won-Mok
    • Nuclear Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.194-199
    • /
    • 1986
  • The behavior of micro amount of Am in aqueous solution were investigated with centrifugation method as a function of pH. In the studies described here, equilibration times were extended to 2-3 weeks to know the aging effect in radiocolloid formation. Also, the effect of the addition of foreign materials, e. g. silica gel and Fe$^{3+}$ were examined as well as the effect of presence of concentrated electrolyte. In the results, Am appeared to be rapidly adsorbed on to impurity particles for pH < 6 and probably on the container walls by an ionic sorption process. The addition of foreign material increased the fraction of Am while the addition of concentrated electrolyte hindered the process. For pH > 7 Am behaved quite differently than for pH < 6. There appeared to be rapid sorption of some Am from solution probably on the container walls followed by partial desorption that occurred over a period of 1-2 days.s.

  • PDF

An Analysis on the Over-Potentially Deposited Hydrogen at the Polycrystalline $Ir/H_2SO_4$ Aqueous Electrolyte Interface Using the Phase-Shift Method (위상이동 방법에 의한 다결정 $Ir/H_2SO_4$ 수성 전해질 계면에서 과전위 수소흡착에 관한 해석)

  • Chun Jagn Ho;Mun Kyeong Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 2000
  • The relation between the phase-shift profile fur the intermediate frequencies and the Langmuir adsorption isotherm at the poly-Ir/0.1 M $H_2SO_4$ aqueous electrolyte interface has been studied using ac impedance measurements, i.e., the phase-shift methods. The simplified interfacial equivalent circuit consists of the serial connection of the electrolyte resistance $(R_s)$, the faradaic resistance $(R_F)$, and the equivalent circuit element $(C_P)$ of the adsorption pseudoca-pacitance $(C_\phi)$. The comparison of the change rates of the $\Delta(-\phi)/{\Delta}E\;and\;\Delta{\theta}/{\Delta}E$ are represented. The delayed phase shift $(\phi)$ depends on both the cathode potential (E) and frequency (f), and is given by $\phi=tan^{-1}[1/2{\pi}f(R_s+R_F)C_P]$. The phase-shift profile $(-\phi\;vs.\;E)$ for the intermediate frequency (ca. 1 Hz) can be used as an experimental method to determine the Langmuir adsorption isotherm $(\theta\;vs.\;E)$. The equilibrium constant (K) for H adsorption and the standard free energy $({\Delta}G_{ads})$ of H adsorption at the poly-Ir/0.1 M $H_2SO_4$ electrolyte interface are $2.0\times10^{-4}$ and 21.1kJ/mol, respectively. The H adsorption is attributed to the over-potentially deposited hydrogen (OPD H).

Characteristics of Salt Adsorption by Calcium Alginate Beads (칼슘알긴산비드에 의한 염분의 흡착특성)

  • 방병호;서정숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.2
    • /
    • pp.89-96
    • /
    • 2002
  • The adsorption characteristics of sodium chloride into Ca-alginate beads have been investigated and the result were as follows: Sodium chloride uptake by Ca-alginate beads increased with time. The highest uptake volume of sodium chloride was 4.2g after 10 minutes. The uptake volume by Fe, Ca, Ba, and Sr-alginate beads was 5.6g, 4.2g, 4.2g and 4.0g, respectively but in case of Fe-alginate beads, the induced hydrogel beads were very fragile and the strength of Fe-alginate beads were weaker than Ca- and Ba-alginate beads. Mg-alginate bead was not formed and Ca-, Ba- and Sr-alginate beads had a similar uptake volume about 4.2g, respectively. The uptake volume of sodium chloride by CaCl$_2$concentration(0.1M. 0.2M and 1M), curing solution, was 4.8, 4.2g and 4.1g, respectively. The uptake volume by sodium alginate concentration(0.6%, 1% and 2%) was 2.8g, 4.0g, and 4.4g, respectively and Ca-alginate bead size was not effected in uptake sodium chloride. The uptake rate on initial sodium chloride concentration(4%, 8%, 12% and 16%) was 30%, 28%, 27% and 25%, respectively. The uptake rate on basic pH(10.0) was higher than when compared to other neutral pH(6.8) and acidic pH(4.0). The initial uptake velocity of sodium chloride from immobilization beads with salt resistant bacteria was lower than that of non-immobilization beads. The uptake rate of sodium chloride was decreased according to elongation of curing time. Reusability of Ca-alginate beads was possible but according to reutilization, the salt uptake volume of beads was also decreased. The uptake volume of sodium chloride from Doengjang by Ca-alginate beads on time course(3, 6, 12, and 24 hour) was revealed 5g, 6g, 7g and 7g, respectively.

Two Stage Process Mechanism of Silica Adsorption by Soil in Adsoption Kinetics (토양의 규산 흡착 카이네틱에서 2단계 흡착 기작)

  • Lee, Sang-Eun;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.107-112
    • /
    • 1996
  • To clarify the mechanism of silica adsorption to soil, kinetic study using continuous stirred-flow method was conducted with the Luisiana soil at three pH levels (pH 5.0, 6.5, and 8.0). Silica adsorption increased continuously without showing the maximum adsorption for long enough experimental time. Kinetic curve of silica adsorption could be divided into two stage processes. The first stage process was fitted well to the following equation with highly significant correlation coefficient : $$R_{ad}=K_a*(Q_{OH}^S)^n$$ where, $R_{ad}$ is silica adsorption rate($Si\;{\mu}mal/min$). $Q_{OH}^S$ is the negative charge sites on the soil surface created by alkali titration, and $K_a$ and n are constants. The "n" value of the first stage process was 1.1. This value indicates that the silica adsorption is accomplished by the monodendate ligand bonding. The second stage process was fitted well to the following equation : $$R_{ad}=K_b*(pH)$$ where, $K_b$ is a constant. The equation indicates that the silica adsorption is not proportional to the $OH^-$ ion concentration. Rather, the increasing pattern of silica adsorption rate with the increase of $OH^-$ ion concentration would decrease exponentially.

  • PDF

Removal of Lead by Anherobacter sp. (Antherobacter sp.에 의한 납 제거)

  • 안갑환;서근학
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 1998
  • The biosorption of heavy metals has received a lot of attraction for application of metal ions treatment. In this work, we studied with Arthrobactor sp., screening from a wastewater containing heavy metals. The Pb uptake capacity of Arthrobactor sp. was nearly 146.9 mg Pb/g dry biomass(initial concentration, 500 may L), whereas the Pb uptake capacity of Sacchuomyces cerevisiae and Sacchuomyces uvuum were only around 39.40 and 35.65 mg Pb yg dry biomass, respectively. The Pb and Cr were removed from metal solution much more effeciently than were the other metals(Cd and Cu). The Pb uptake capacity of Aythrobactor sp. increased with increasing in pH(1.8, 3.0 and 4.0) and decreased with Increaslng of biomass concentration. At pH 4.0, the Pb uptake capacity reached 244 mg Pb/g dry biomass in Pb initial concentration of 1000 mg/L. The Pb uptake capacity of Ayhol)actor sp. treated by KOH and $CaCl_2$ were increased above values obtained with untreated Ayurobactor sp. However, the Pb uptake capacity fore the breakthrough points were reached.

  • PDF

Surface Characteristics and Adsorption Capacity of $H_2$S on the Activated Carbon Impregnated with NaOH (NaOH로 첨착된 활성탄의 표면특성과 $H_2$S 흡착능)

  • 박병배;이석기;박영성
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.4
    • /
    • pp.319-324
    • /
    • 2001
  • 본 연구에서는 NaOH로 첨착시킨 활성탄의 표면특성변화와 H$_2$S 흡착능을 고찰하였다. 첨착시약으로 사용된 NaOH 용액의 농도는 1~8N이며, 활성탄의 입자크기는 8$\times$30mesh가 적용되었다. 실험결과는 첨착율이 0.87~5.8% 범위 내에서 증가할수록 BET 표면적은 1050$m^2$/g에서 783$m^2$/g로 감소하며, 표면산도는 0.541meq/g-AC에서 0meq/g-AC으로 감소하고, pH는 9.56에서 10.86으로 증가하는 것으로 밝혀졌다. 또한 NaOH로 첨착시킨 활성탄의 H$_2$S 평형흡착능을 보임으로써 비첨착활성탄에 비해 2~3배 높은 수준을 나타냄을 알 수 있었다.

  • PDF