• Title/Summary/Keyword: $H_2O_2$ Oxidation

Search Result 1,282, Processing Time 0.024 seconds

Catalytic Decomposition of $SF_6$ by Hydrolysis and Oxidation over ${\gamma}-Al_2O_3$ (${\gamma}-Al_2O_3$ 촉매상에서 가수분해와 산화반응에 의한 $SF_6$ 촉매분해 특성)

  • Lee, Sun-Hwa;Park, No-Kuk;Yoon, Suk-Hoon;Chang, Won-Chul;Lee, Tae-Jin
    • Clean Technology
    • /
    • v.15 no.4
    • /
    • pp.273-279
    • /
    • 2009
  • $SF_6$, which has a high global warming potential, can be decomposed to sulfur and fluorine compounds through hydrolysis by $H_2O$ or oxidation by $O_2$ over solid acid catalysts. In this study ${\gamma}-Al_2O_3$ was employed as the solid acid catalyst for the abatement of $SF_6$ and its catalytic activity was investigated with respect to the reaction temperature and the space velocity. The catalytic activity for $SF_6$ decomposition by the hydrolysis reached the maximum at and above 973 K with the space velocity of $20,000\;ml/g_{-cat}{\cdot}h$, exhibiting a conversion very close to 100%. When the space velocity was lower than $45,000\;ml/g_{-cat}{\cdot}h$, the conversion was maintained at the maximum value. On the other hand, the conversion of $SF_6$ by the oxidation was about 20% under the same conditions. The SEM and XRD analyses revealed that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ during the hydrolysis and to $AlF_3$ during the oxidation, respectively. The size of $AlF_3$ after the oxidation was over $20\;{\mu}m$, and its catalytic activity was low due to the low surface area. Therefore, it was concluded that the hydrolysis over ${\gamma}-Al_2O_3$ was much more favorable than the oxidation for the catalytic decomposition of $SF_6$.

A Study on the Degradation Characteristics of 1,4-dioxane at Different Initial $H_2O_2$ Concentration with Advanced Oxidation Process using Ozone and Hydrogen Peroxide ($O_3/H_2O_2$를 이용한 고급산화공정에서 초기 $H_2O_2$ 농도에 따른 1,4-dioxane의 제거 특성 연구)

  • Park, Jin-Do;Suh, Jung-Ho;Lee, Hak-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1108-1113
    • /
    • 2005
  • Advanced oxidation process involving $O_3/H_2O_2$ was used to eliminate 1,4-dioxane and to enhance the biodegradability of dioxane-contaminated water. Oxidation process was carried out in a bubble column reactor under different pH and $H_2O_2$ concentrations. The removal efficiencies of 1,4-dioxane were investigated at hydrogen peroxide concentration between 40 and 120 mg/L. At the same pH, removal efficiencies of 1,4-dioxane increased with increasing initial $H_2O_2$ concentration. There was a linear relationship between initial concentration of $H_2O_2$ and the amount of consumed $O_3$. It was observed that the high $H_2O_2$ concentration accelerated the generation of hydroperoxy ions(${HO_2}^-$) and hydroxyl radicals($OH{\cdot}$). Hydrogen peroxide enhanced the decomposition of 1,4-dioxane and the biodegradability of the solution.

Study on Catalytic Activity of the Selective CO Oxidation and Characterization Using $La_{0.5}Ce_{0.5}Co_{1-x}Cu_xO_{3-{\alpha}}$ Perovskite Catalysts ($La_{0.5}Ce_{0.5}Co_{1-x}Cu_xO_{3-{\alpha}}$ Perovskite촉매의 선택적 CO 산화반응 및 특성 분석에 관한 연구)

  • Sohn, Jung-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.116-123
    • /
    • 2007
  • [ $La_{0.5}Ce_{0.5}Co_{1-x}Cu_xO_{3-{\alpha}}$ ](X=0, 0.1, 0.3, 0.5) perovskites were prepared by coprecipitation method at pH 7 or pH 11 and its catalytic activity of selective CO oxidation was investigated. The characteristics of these catalysts were analyzed by $N_2$ adsorption, X-ray diffraction(XRD), SEM, $O_2$-temperature programmed desorption(TPD). The pH value at a preparation step made effect on particle morphology. The smaller particle was obtained with a condition of pH 7. The better catalytic activity was observed using catalysts prepared at pH 7 than pH 11. The maximum CO conversion of 98% was observed over $La_{0.5}Ce_{0.5}Co_{0.7}Cu_{0.3}O_{3-{\alpha}}$ at $320^{\circ}C$. Below $200^{\circ}C$, the most active catalyst was $La_{0.5}Ce_{0.5}Co_{0.9}Cu_{0.1}O_{3-{\alpha}}$, of which conversion was 92% at $200^{\circ}C$. By the substitution of Cu, the evolution of ${\alpha}$-oxygen was remarkably enhanced regardless of pH value at preparation step according to $O_2$-TPD. Among the different ${\alpha}$-oxygen species, the oxygen species evolved between $400^{\circ}C$ and $500^{\circ}C$, gave the better catalytic performance for selective CO oxidation including $La_{0.5}Ce_{0.5}CoO_3$ in which Cu was absent.

Failure Mechanisms for Zirconia Based Thermal Barrier Coatings

  • Lee, Eui Y.;Kim, Jong H.
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.340-344
    • /
    • 1998
  • Failure mechanisms were investigated for the two layer thermal barrier coatings consisting of NiCrAlY bond coat and $ZrO_2$-8wt.% $Y_2O_3$ ceramic coating during cyclic oxidation. $Al_2O_3$ developed at the ceramic coating/bond coat interface first, followed by the Cr/Ni rich oxides such as $NiCr_2O_4$ and $Ni(Al, Cr)_2O_4$ during cyclic oxidation. It was observed that the spalling of ceramic coatings took place primarily within the NiCrAlY bond coat oxidation products or at the interface between the bond coat oxidation products and zirconia based ceramic coating or the bond coat. It was also observed that the fracture within these oxidation products occurred with the formation of $Ni(Cr, Al)_2O_4$ spinel or Cr/Ni rich oxides. It was therefore concluded that the formation of these oxides was a life-limiting event for the thermal barrier coatings.

  • PDF

Corrosion of Fe-2%Mn-0.5%Si Steels at 600-800℃ in N2/H2O/H2S Atmospheres

  • Kim, Min-Jung;Park, Sang-Hwan;Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.201-206
    • /
    • 2011
  • Fe-2%Mn-0.5%Si alloys were corroded at 600, 700 and $800^{\circ}C$ for up to 70 h in 1 atm of $N_2$ gas, or 1 atm of $N_2/H_2O$-mixed gases, or 1 atm of $N_2/H_2O/H_2S$-mixed gases. Oxidation prevailed in $N_2$ and $N_2/H_2O$ gases, whereas sulfidation dominated in $N_2/H_2O/H_2S$ gases. The oxidation/sulfidation rates increased in the order of $N_2$ gas, $N_2/H_2O$ gases, and, much more seriously, $N_2/H_2O/H_2S$ gases. The base element of Fe oxidized to $Fe_2O_3$ and $Fe_3O_4$ in $N_2$ and $N_2/H_2O$ gases, whereas it sulfidized to FeS in $N_2/H_2O/H_2S$ gases. The oxides or sulfides of Mn or Si were not detected from the XRD analyses, owing to their small amount or dissolution in FeS. Since FeS was present throughout the whole scale, the alloys were nonprotective in $N_2/H_2O/H_2S$ gases.

The Oxidation of Kovar in Humidified $N_2$/H$_2$ Atmosphere (가습된 $N_2$/H$_2$혼합가스 분위기에서의 Kovar 산화 거동)

  • 김병수;김민호;김상우;최덕균;손용배
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • In order to form a uniform oxidation layer of spinel phase on Kovar which helps the strong bonding in Kovar-to-glass sealing, the humidified $N_2/H_2$ was used as an oxidation atmosphere. The oxidation of Kovar was controlled by diffusion mechanism and the activation energy was 31.61 kacl/mol at 500~$800^{\circ}C$. After oxidation at $600^{\circ}C$, the external oxidation layer was below 0.5 $\mu \textrm{m}$ thick. According to TEM analysis, oxidized Kovar was spinel its lattice parameter of 7.9 $\AA$. Oxidation of under $600^{\circ}C$ and in a humidified $N_2/H_2$ atmosphere, Kovar was found to be appropriate for the Kovar-to-glass sealing.

  • PDF

An Experimental and Modeling Study on the Oxidation Kinetics of Nitric Oxide over Platinum-based Catalysts (백금계 촉매상에서 산화질소(NO)의 산화반응속도에 관한 실험 및 모델링 연구)

  • Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.71-80
    • /
    • 2012
  • To improve the $NO_X$ conversion over a SCR (selective catalytic reduction) catalyst, the DOC (diesel oxidation catalyst) is usually placed upstream of the SCR catalyst to enhance the fast SCR reaction ($4NH_3+2NO+2NO_2{\rightarrow}4N_2+6H_2O$) using equimolar amounts of NO and $NO_2$. Here, a ratio of $NO_2/NO_X$ above 50% should be avoided, because the reaction with $NO_2$ only ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$) is slower than the standard SCR reaction ($4NH_3+4NO+O_2{\rightarrow}4N_2+6H_2O$). In order to accurately predict the performance characteristics of SCR catalysts, it is therefore desired to develop a more simple and reliable mathematical and kinetic models on the oxidation kinetics of nitric oxide over a DOC. In the present work, the prediction accuracy and limit of three different chemical reaction kinetics models are presented to describe the chemicophysical characteristics and conversion performance of DOCs. Steady-state experiments with DOCs mounted on a light-duty four-cylinder 2.0-L turbocharged diesel engine then are performed, using an engine-dynamometer system to calibrate the kinetic parameters such as activation energies and preexponential factors of heterogeneous reactions. The reaction kinetics for NO oxidation over Pt-based catalysts is determined in conjunction with a transient one-dimensional (1D) heterogeneous plug flow reactor (PFR) model with diesel exhaust gas temperatures in the range of 115~$525^{\circ}C$ and space velocities in the range of $(0.4{\sim}6.5){\times}10^5\;h^{-1}$.

Hot Corrosion Behavior of Inconel Alloys and Incoloy 800H in Molten LiCl-Li2O Salt (LiCl-Li2O 용융염에서 Inconel 합금 및 Incoloy 800H의 고온 부식거동)

  • Lim, Jong-Ho;Choi, Jeong-Mook
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.128-134
    • /
    • 2013
  • A study on the corrosion behavior of Inconel alloys and Incoloy 800H in molten salt of LiCl-$Li_2O$ was investigated at $650^{\circ}C$ for 24-312 hours in an oxidation atmosphere. The order of the corrosion rate was Inconel 600 < Inconel 601 < Incoloy 800H < Inconel 690. Inconel 600 showed the best performance suggesting that the content of Fe, Cr and Ni are the important factor for corrosion resistance in hot molten salt oxidation conditions. The corrosion products of Inconel 600 and Inconel 601 were $Cr_2O_3$ and $NiFe_2O_4$, In case of Inconel 690, a single layer of $Cr_2O_3$ was formed in the early stage of corrosion and an outer layer of $NiFe_2O_4$ and inner layer of $Cr_2O_3$ were formed with an increase of corrosion time. In the case of Incoloy 800H, $Cr_2O_3$ and $FeCr_2O_4$ were observed. Most of the outer scale of the alloys was observed to be spalled from the results of the SEM analysis and the unspalled scale which adhered to the substrate was composed of three layers. The outer layer, the middle one, and the inner one were Fe, Cr, and Ni-rich, respectively. Inconel 600 showed localized corrosion behavior and Inconel 601, 690 and Incoloy 800H showed uniform corrosion behavior. Ni improves the corrosion resistance and too much Cr and/or Fe content deteriorates the corrosion resistance.

A Effect of H2O-H2 Pretreatment on VOCs Oxidation over Noble Catalysts on Titania (티타니아에 담지된 귀금속촉매의 H2O-H2 전처리에 따른 휘발성유기화합물 산화에 미치는 영향)

  • Kim, Moon-Chan;Ko, Sun-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.552-556
    • /
    • 2007
  • In this study, noble metals (Pd, Ru, Ir) were supported to $TiO_2$ catalyst. In order to distribute metals uniformly, $H_2O-H_2$ pretreatment technique was used. Xylene, toluene, and MEK were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and were characterized by XRD, and XPS analysis. Pd-Ru, Pd-Ir bimetallic catalysts had multipoint active sites which improved the range of Pd metal state. Bimetallic catalysts had a higher conversion of VOCs than that of monometallic one. The effect of $H_2O-H_2$ pretreatment technique was the enhancement of uniform distribution of Pd particles and promotion of catalytic efficiency. In this study, addition of Ru and Ir metals to Pd promoted oxidation conversion of VOCs. In addition, $H_2O-H_2$ pretreatment promoted removal efficiency of VOCs on the $TiO_2$ support.