• Title/Summary/Keyword: $H_2$ oxidation

Search Result 2,317, Processing Time 0.041 seconds

A study on the NO oxidation using dry oxidant produced by the catalytic conversion of H2O2 (H2O2 촉매 전환에 의해 생성된 건식산화제를 이용한 NO 산화에 관한 연구)

  • Jang, Jung Hee;Han, Gi Bo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.100-109
    • /
    • 2016
  • In this study, the NO oxidation using dry oxidant produced by catalytic $H_2O_2$ conversion was conducted. It was shown that Mn-based $Fe_2O_3$ support catalyst has the best performance in the catalytic $H_2O_2$ conversion and its combined-NO oxidation. The reaction characteristics of NO oxidation was investigated by the various operation conditions such as $H_2O_2$ amount, oxidation temperature and space velocity. As a results, the oxidation efficiency of NO greatly depends on the oxidation reaction temperature, $H_2O_2$ amount and space velocity. The performance of NO oxidation was increased with increasing the oxidation temperature and $H_2O_2$ amount. Also, the performance of NO oxidation was decreased with increasing the space velocity.

Removal Characteristics of 1,4-dioxane with O3/H2O2 and O3/Catalyst Advanced Oxidation Process (O3/H2O2와 O3/Catalyst 고급산화공정에서 1,4-dioxane의 제거 특성)

  • Park, Jin-Do;Suh, Jung-Ho;Lee, Hak-Sung
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.193-201
    • /
    • 2006
  • Advanced oxidation processes involving $O_3/H_2O_2$ and $O_3/catalyst$ were used to compare the degradability and the effect of pH on the oxidation of 1,4-dioxane, Oxidation processes were carried out in a bubble column reactor under different pH. Initial hydrogen peroxide concentration was 3.52 mM in $O_3/H_2O_2$ process and 115 g/L (0.65 wt.%) of activated carbon impregnated with palladium was packed in $O_3/catalyst$ column. 1,4-dioxane concentration was reduced steadily with reaction time in $O_3/H_2O_2$ oxidation process, however, in case of $O_3/catalyst$ process, about $50{\sim}75%$ of 1,4-dioxane was degraded only in 5 minutes after reaction. Overall reaction efficiency of $O_3/catalyst$ was also higher than that of $O_3/H_2O_2$ process. TOC and $COD_{cr}$ were analyzed in order to examine the oxidation characteristics with $O_3/H_2O_2\;and\;O_3/catalyst$ process. The results of $COD_{cr}$ removal efficiency and ${\Delta}TOC/{\Delta}ThOC$ ratio in $O_3/catalyst$ process gave that this process could more proceed the oxidation reaction than $O_3/H_2O_2$ oxidation process. Therefore, it was considered that $O_3/catalyst$ advanced oxidation process could be used as a effective oxidation process for removing non-degradable toxic organic materials.

A Study on the Factors of Fenton-oxidation of MTBE in Water and Soil (Fenton-oxidation에 의한 MTBE(Methyl Tertiary Butyl Ether)처리시의 영향인자에 관한 연구)

  • 전은미;박석환;정문식
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.3
    • /
    • pp.63-69
    • /
    • 1998
  • The treatment of soils and water contaminated with MTBE using the Fenton oxidation was investigated. The effects of dosage of $H_{2}O_{2}$, and Fe$^{2+}$ concentrations, and solution pH on transformation and mineralization in soil were evaluated. Generation of TBA and acetone following Fenton-oxidation of MTBE in water and generation of acetone following Fenton-oxidation of TBA were observed. Therefore TBA and acetone are degradation intermediates of MTBE. There was a large difference of treatment efficiency in Fenton oxidation of MTBE between soil and water system. This may be caused by the complex nature of soil, soil organic matter which can consumed OH $\cdot$ radicals, and interacting with inorganic-soil constituents. The pH of soil was observed to have a significant effect on the chemical oxidation efficient of MTBE in soil The data demonstrated that optimal pH range were pH 3~4 and around 6. The soil batch studies demonstrated that treatment efficiency of MTBE was enhanced by adding additional ferrous salts but Fenton-oxidation occurred in no additional iron which indicated that iron in soil can catalyze the Fenton-oxidation. The most effective parameter of Fentonoxidation was $H_{2}O_{2}$/Fe$^{2+}$ ratio which theocratical ratio is 0.5. The optimal range of this ratio was found to be 0.6~2.3. In evaluating effect of $H_{2}O_{2}$ dosage on treatment efficiency, the increase of $H_{2}O_{2}$ did not always lead to increase of decompositions of MTBE in soil. Fenton oxidation was effective in destroying MTBE in aqueous extracts of contaminated soil and water. Experimental data provided evidence that the Fenton oxidation can effectively remediate MTBE-contaminated water and soil.

  • PDF

The Oxidation of Kovar in Humidified $N_2$/H$_2$ Atmosphere (가습된 $N_2$/H$_2$혼합가스 분위기에서의 Kovar 산화 거동)

  • 김병수;김민호;김상우;최덕균;손용배
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • In order to form a uniform oxidation layer of spinel phase on Kovar which helps the strong bonding in Kovar-to-glass sealing, the humidified $N_2/H_2$ was used as an oxidation atmosphere. The oxidation of Kovar was controlled by diffusion mechanism and the activation energy was 31.61 kacl/mol at 500~$800^{\circ}C$. After oxidation at $600^{\circ}C$, the external oxidation layer was below 0.5 $\mu \textrm{m}$ thick. According to TEM analysis, oxidized Kovar was spinel its lattice parameter of 7.9 $\AA$. Oxidation of under $600^{\circ}C$ and in a humidified $N_2/H_2$ atmosphere, Kovar was found to be appropriate for the Kovar-to-glass sealing.

  • PDF

Mechanism of Intercalation Compounds in Graphite with Hydrogen Sulfate (I. Study of Intermediate Phase between 2 Stage and 1 Stage in Graphite Hydrogen Sulfate with Anodic Oxidation) (흑연에 황산을 Intercalation 시킬때의 Mechanism 규명 (I. 전기적 산화방법에 의한 Graphite Salts의 중간상에 관한 연구))

  • 고영신;한경석;이풍헌
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.5-8
    • /
    • 1985
  • Graphite has been oxidized to graphite hydrogen sulfate in concentrated $H_2SO_4$. Anodic oxidation and chemical oxidation of graphite in $H_2SO_4$ generally leads to the formation of intercalation compounds of the ionic salt type through incorporation of $H_2SO_4^-$ions and $H_2SO_4$ molecules into the graphite. Several other reactions also accur at various points of the charging cycle. But there is no satisfactory kinetics and mechanism of intercalationin graphite. We have studied them with anodic oxidation and chemical oxidation. We found six distinct phenomena between 2nd stage and 1st stage in chemical oxidation. We examined them in detail by the following in the measurements electrical oxidation. X-ray diffractions UV-Vis spectroscopy density measurements. We could obtained a equation for kinetic according to the reaction rate from this results and mechanism of intercalation between 2nd stage and 1st stage with hydrogen sulfate in graphite. Three thesis were written for the mechanism of intercalation compounds in graphite with hydrogen sulfate ; first thesis is anodic oxidation second thesis is chemical oxidation and definition of transit phase between 2nd etc the third thesis is the kinetic mechanism of intercalation compounds in graphite with Hydrogen sulfate. This thesis is the first paper among three thesis as anodic oxidation.

  • PDF

Oxidation of CVD β-SiC in Impurity-Controlled Helium Environment at 950℃ (950℃ 불순물을 포함한 헬륨 환경에서 CVD β-SiC의 산화)

  • Kim, Dae-Jong;Kim, Weon-Ju;Jang, Ji-Eun;Yoon, Soon-Gil;Kim, Dong-Jin;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.426-432
    • /
    • 2011
  • The oxidation behavior of CVD ${\beta}$-SiC was investigated for Very High Temperature Gas-Cooled Reactor (VHTR) applications. This study focused on the surface analysis of the oxidized CVD ${\beta}$-SiC to observe the effect of impurity gases on active/passive oxidation. Oxidation test was carried out at $950^{\circ}C$ in the impurity-controlled helium environment that contained $H_2$, $H_2O$, CO, and $CH_4$ in order to simulate VHTR coolant chemistry. For 250 h of exposure to the helium, weight changes were barely measurable when $H_2O$ in the bulk gas was carefully controlled between 0.02 and 0.1 Pa. Surface morphology also did not change based on AFM observation. However, XPS analysis results indicated that a very small amount of $SiO_2$ was formed by the reaction of SiC with $H_2O$ at the initial stage of oxidation when $H_2O$ partial pressure in the CVD ${\beta}$-SiC surface placed on the passive oxidation region. As the oxidation progressed, $H_2O$ consumed and its partial pressure in the surface decreased to the active/passive oxidation transition region. At the steady state, more oxidation did not observable up to 250 h of exposure.

Ammonia oxidation activity of nitrifying bacteria and effects of some environmental factors (질화세균의 암모니아 산화능과 이에 미치는 환경요인의 영향)

  • 송홍규;하영칠;홍순우
    • Korean Journal of Microbiology
    • /
    • v.21 no.2
    • /
    • pp.79-85
    • /
    • 1983
  • Ammonia oxidation activity of polluted water samples in Jinhae Bay and isolated strain from the seawater was investigated, and effects of environmental factors such as temperature, salinity, substrate concentration to the ammonia oxidation were also investigated. The ammonia oxidation activities of sediments, 0.01-0.04mg eq. $NO_2-N/l/h$, were exceptionally higher than that of sea water, $0.5{\sim}1{\mu}g$ eq. $NO_2-N/l/h$. the activities of muddy sediments at station 4 and 2 were 0.03~0.04mg eq. $NO_2-N/l/h$ and that of sandy sediment at station 3 was 0.002mg eq. $NO_2-N/l/h$. In the case of sea water, the activity of polluted area, station 1, was 2 times higher than that of offshore, station 4. The isolated strain reached log phase after 30days culturs and its oxidation activity was $2{\sim}3{\mu}g$ eq. $NO_2-N/day$. The maximum oxidation of ammonia by IA 13 strain occured at 30mg/l oxidation increased with the salinity rising up to 100% seawater concentraion. And temperature for maximum oxidation of ammonia was $35^{\circ}C$. the oxidation increased with the salinity rising up to 100% seawater concentration.

  • PDF

Electrochemical behavior of dissolved hydrogen at Pt electrode surface in a high temperature LiOH-H3BO3 solution: Effect of chloride ion on the transient current of the dissolved hydrogen

  • Myung-Hee Yun;Jei-Won Yeon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3659-3664
    • /
    • 2023
  • The electrochemical behavior of dissolved hydrogen (H2) was investigated at a Pt electrode in a high temperature LiOH-H3BO3 solution. The diffusion current of the H2 oxidation was proportional to the concentration of the dissolved H2 as well as the reciprocal of the temperature. In the polarization curve, a potential region in which the oxidation current decreases despite an increase in the applied potential between the H2 oxidation and the water oxidation regions was observed. This potential region was interpreted as being caused by the formation of a Pt oxide layer. Using the properties of the Cl- ion that reduces the growth rate of the Pt oxide layer, it was confirmed that there is a correlation between the Cl- ion concentration and the transient current of the H2 oxidation.

The Effects of Oxidation Conditions on the Magnetic Properties of Cu-Zn Ferrite Powder (산화 조건에 따른 Cu-Zn Ferrite분말의 자기적 특성)

  • Shin, K.H.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.222-224
    • /
    • 1993
  • In this paper, The optimum oxidation conditions for the formation of Cu-Zn ferrite were investigated using precipitates obtained by the mixture of $CuCl_2{\cdot}2H_2O$, $ ZnCl_2$, $FeCl_3{\cdot}6H_2O$ and NaOH. The precipitates were prepared by coprecipitation method on various temperatures and oxidation conditions. The oxidation products were examined by SEM, XRD, and VSM. The particles obtained at 70($^{\circ}C$) were more spherical and fine than that of prepared at 25($^{\circ}C$), 50($^{\circ}C$), 60($^{\circ}C$), respectively. By $H_2O_2$ oxidation, the saturation magnetization of the powders was little influenced, But, by air oxidation the saturation magnetization of the powders was influenced intricately. According to our experimental data, the saturation magnetization of the powders increased with reaction time and was saturated at 9 hours.

  • PDF

Effect of Pre-oxidation of Pitch by H2O2 on Porosity of Activated Carbons (과산화수소에 의한 산화가 핏치계 활성탄소의 기공성질에 미치는 영향)

  • Kim, Young-Ha;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.183-187
    • /
    • 2010
  • Activated carbons (ACs) have been prepared from pitch by the combination of a chemical oxidation with different $H_2O_2$ concentrations i.e., 5, 15, and 25 wt% and a chemical activation with KOH at a constant KOH/pitch ratio of 3/1. The influence of $H_2O_2$ solution on the microporous properties of the pitch and the final activated carbons were invested using XRD, FT-IR, XPS, $N_2$-adsorption, and SEM. XRD indicated that the value of interplanar distance $d_{002}$ increased by chemical oxidation. FT-IR and XPS results showed that the chemical oxidation promoted the formation of surface oxygen functionalities. Also, the specific surface area of the resulting ACs was increased with increasing the concentration of $H_2O_2$ chemical oxidation and showed a maximum value of $2111m^2/g$ at 25 wt% $H_2O_2$ concentration.