• 제목/요약/키워드: $H_2$ adsorption isotherms

Search Result 137, Processing Time 0.022 seconds

Removal of Dyes by Biosorption on Biomass Ash

  • Rattan, V.K.;Singh, Harminder;Purai, Abhiti
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • The use of low cost and ecofriendly adsorbent has been investigated as an alternative to the current expensive method of removing dyes from wastewater. Cow dung cakes were collected from the nearby village which was burnt in a muffle furnace at $500^{\circ}C$ to obtain the required ash. This paper deals with the removal of Reactive Blue 221, Acidoll Yellow 2GNL and Olive BGL which are mainly used in textile industry, from aqueous solution by cow dung ash without any pretreatment. The adsorption was achieved under different pH, adsorbate concentration and the applicability of Langmuir and Freundlich isotherms were examined.

Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons

  • Yoo, Hye-Min;Lee, Seul-Yi;Kim, Byung-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.112-115
    • /
    • 2011
  • The scope of this work investigates the relationship between the amount of oxygen-functional groups and hydrogen adsorption capacity with different concentrations of phosphoric acid. The amount of oxygen-functional groups of activated carbons (ACs) is characterized by X-ray photoelectron spectroscopy. The effects of chemical treatments on the pore structures of ACs are investigated by $N_2$/77 K adsorption isotherms. The hydrogen adsorption capacity is measured by $H_2$ isothermal adsorption at 298 K and 100 bar. In the results, the specific surface area and pore volume slightly decreased with the chemical treatments due to the pore collapsing behaviors, but the hydrogen storage capacity was increased by the oxygen-functional group characteristics of AC surfaces, resulting from enhanced electron acceptor-donor interaction at interfaces.

Experiment and Simulation of PSA Process for $H_2/Ar$ Mixtures gas ($H_2/Ar$ 혼합기체의 PSA 공정 실험과 모사)

  • Kang, Seok-Hyun;Jeong, Byung-Man;Choi, Hyun-Woo;Kim, Sung-Hyun;Lee, Byung-Kwon;Choi, Dae-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.180-190
    • /
    • 2005
  • The PSA cycle was performed for the separation of binary gas mixture $H_2/Ar$ (80%/20%) using the six-step two-bed process. Adsorption equilibrium contains a LRC model for equilibrium adsorption isotherms and a LDF model for mass transfer. Aspen ADSIM, simulator was applied to predict the separation performance. The effect of cycle parameters such as feed rate, adsorption pressure and P/F ratio on the separation of hydrogen has been studied in experiment and simulation. In the results, maximize the recovery of hydrogen as a high purity was 13LPM feed flowrate, 120sec adsorption time, 11atm adsorption pressure and 0.1 P/F ratio in a cyclic steady-state come out since 10th cycle.

Mechanisms of Adsorption with Respect to Sulfate Mobility in Multispecies Systems of Soils (토양의 다중이온체계내에서의 황산이온의 이동을 고려한 흡착기작)

  • Chung, Doug Young
    • Korean Journal of Agricultural Science
    • /
    • v.27 no.2
    • /
    • pp.135-140
    • /
    • 2000
  • The mobility of sulfate in soils defends on several factors including redox potential, soil mineralogy, pH, and the presence of other anions that compete for sorption sites with sulfate. The proposed model of adsorption mechanism for sulfate postulated that reaction is between anions in solution and charged surfaces of soil particles. With appropriate choice of parameters obtained from the adsorption-desorption experiments, the equation of transport model adapt an empirical approach, capable of handling most general equilibrium adsorption isotherms, suitable for multispecies systems.

  • PDF

Determination of Loxoprofen Adsorption Isotherms by Frontal Analysis and Pulse Input Method (Frontal Analysis와 Pulse Input Method를 이용한 Loxoprofen의 등온흡착식 결정)

  • Lee, Eun;Park, Joon-Sub;Kim, In-Ho
    • KSBB Journal
    • /
    • v.21 no.5
    • /
    • pp.371-375
    • /
    • 2006
  • Frontal analysis(FA) and Pulsed input method(PIM) have been frequently utilized to measure isotherm of single solute, as well as non-competitive isotherms of two solutes in chromatography(1). FA and PIM were used in this study as complementary methods to measure adsorption isotherms of loxoprofen racemate in HPLC. Prior to FA and PIM experiments, measurements of loxoprofen solubility were made at hexane/ethanol=50/50, 80/20, 95/5(v/v) with acetic acid(0.5%) for adjusting pH. The last composition(95/5) of hexane/ethanol allows us to separate loxoprofen racemate into two forms(retentate, extract). PIM and FA were used to determine the isotherms of re-and ex-loxoprofen.

Low concentration cadmium removal using weathered sand of basalt

  • Park, Jae Hong;Lee, Jae Kwan;Shin, Dong Seok
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.51-58
    • /
    • 2021
  • The natural weathered sand of basalt (WSB) has been used for the removal of cadmium from aqueous solution. The influence of various parameters i.e., contact time, pH, weathered sand of basalt dosage, particle size of the weathered sand of basalt, temperature and initial cadmium concentration were analyzed. Cadmium adsorption kinetics was well described by the pseudo second order model. Adsorption equilibrium for cadmium was properly well fitted to Langmuir isotherm model with maximum adsorption capacity 0.50 mg/g. Compared with the other experimental results using various kinds of adsorbents at a low concentration (1.0 mg/L or so) similar to that of this study, the cadmium removal efficiency using weathered sand of basalt was higher. It has been demonstrated that weathered sand of basalt has a available alternative adsorbent for cadmium when its initial concentration is low.

Adsorption of methylene blue from an aqueous dyeing solution by use of santa barbara amorphous-15 nanostructure: Kinetic and isotherm studies

  • Alizadeh, Reza;Zeidi, Amir
    • Advances in environmental research
    • /
    • v.6 no.2
    • /
    • pp.113-125
    • /
    • 2017
  • Santa Barbara Amorphous-15(SBA-15) nanoparticles were utilized as the inexpensive and effective adsorbents to remove methylene blue dye from the aqueous solution.SBA-15 was created by Zhao et al method. Infrared spectroscopy, X-ray diffraction and scanning electron microscopy (SEM) were used for the evaluated physical properties of SBA-15. The results of diffraction X-ray indicated that was the crystalline structure for it. Also IR spectroscopy indicated was a silica the whole structure of the groups and SEM image verify the structure of relatively identical particles size of SBA-15. Factors affecting adsorption including the amounts of adsorbent, pH and contact time were investigated by a SBA-15 nanomaterial design. The extent of dye removal enhanced with increasing initial dye concentration and pH from 4 to 10. The higher percentage adsorption were obtained under optimum conditions of variables (sorbent dose of 200 mg/liter, initial MB concentration 10 mg/liter, initial pH of 10 and temperature of $25^{\circ}C$). Maximum adsorption happened after the 2 hour and the kinetic processes of the dyes adsorption were described by applying the pseudo-first-order and the pseudo-second-order and the relatively High correlation with the kinetic Ellovich models. It was found that the pseudo-second-order models kinetic equation described the data of dye adsorption with a good correlation (R2>0.999) which indicated chemisorption mechanism. Freundlich and Langmuir adsorption models were investigated in conditions of variables (adsorbent dose 0.01 gr/liter, MB concentration 10, 20, 30 mg/liter, pH of 4, 7, 10, contact time 90 min and temperature of $27^{\circ}C$). The adsorption data were represented by Langmuir isotherm model. These values are higher than the adsorption capacities of some other adsorbents that have recently been published in the literature.

Removal of Chromium by Activated Carbon Fibers Plated with Copper Metal

  • Park, Soo-Jin;Jung, Woo-Young
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.15-21
    • /
    • 2001
  • In this work, activated carbon fibers (ACFs) were plated with copper metal using electroless plating method and the effects of surface properties and pore structures on chromium adsorption properties were investigated. Surface properties of ACFs have been characterized using pH and acid/base values. BET data with $N_2$ adsorption were used to obtain the structural parameters of ACFs. The electroless copper plating did significantly lead to a decrease in the surface acidity or to an increase in the surface basicity of ACFs. However, all of the samples possessed a well-developed micropore. The adsorption capacity of Cr(III) for the electroless Cu-plated ACFs was higher than that of the as-received, whereas the adsorption capacity of Cr(VI) for the former was lower than that of the latter. The adsorption rate constants ($K_1$, $K_2$, and $K_3$) were also evaluated from chromium adsorption isotherms. It was found that $K_1$ constant for Cr(III) adsorption depended largely on surface basicity. The increase of Cr(III) adsorption and the decrease of Cr(VI) adsorption were attributed to the formation of metal oxides on ACFs, resulting in increasing the surface basicity.

  • PDF

Cempedak Durian (Artocarpus sp.) Peel as a Biosorbent for the Removal of Toxic Methyl Violet 2B from Aqueous Solution

  • Dahri, Muhammad Khairud;Chieng, Hei Ing;Lim, Linda B.L.;Priyantha, Namal;Mei, Chan Chin
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.576-583
    • /
    • 2015
  • This paper aims to investigate the potential use of cempedak durian peel (CDP) from Negara Brunei Darussalam, which is low-cost, locally available, eco-friendly and highly efficient to remove methyl violet (MV) dye from aqueous solutions. The time required for equilibrium to be reached is 2.0 h with no adjustment of pH necessary. FTIR analysis was indicative of the involvement of -COOH and C=O functional groups in adsorption process. The Langmuir model provided the best fit with maximum adsorption capacity of $0.606mmol\;g^{-1}$. Thermodynamics data indicate that the adsorption is spontaneous, feasible and endothermic in nature. Best regeneration of CDP's adsorption ability is achieved by base solution, showing about 95% removal efficiency of MV even after 5 cycles, indicating that CDP can be regenerated and reused. This, together with its high adsorption capacity, makes CDP a potential adsorbent for the removal of MV in wastewater.

Thermally-activated Mactra veneriformis shells for phosphate removal in aqueous solution

  • Yeon-Jin, Lee;Jae-In, Lee;Chang-Gu, Lee;Seong-Jik, Park
    • Membrane and Water Treatment
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • This study explored the feasibility of calcium-rich food waste, Mactra veneriformis shells (MVS), as an adsorbent for phosphate removal, and its removal efficiency was enhanced by the thermal activation process. The CaCO3 in MVS was converted to CaO by thermal activation (>800 ℃), which is more favorable for adsorbing phosphate. Thermal activation did not noticeably influence the specific surface area of MVS. The MVS thermally activated at 800 ℃ (MVS-800), showed the highest phosphate adsorption capacity, was used for further adsorption experiments, including kinetics, equilibrium isotherms, and thermodynamic adsorption. The effects of environmental factors, including pH, competing anions, and adsorbent dosage, were also studied. Phosphate adsorption by MVS-800 reached equilibrium within 48h, and the kinetic adsorption data were well explained by the pseudo-first-order model. The Langmuir model was a better fit for phosphate adsorption by MVS-800 than the Freundlich model, and the maximum adsorption capacity of MVS-800 obtained via the Langmuir model was 188.86 mg/g. Phosphate adsorption is an endothermic and involuntary process. As the pH increased, the phosphate adsorption decreased, and a sharp decrease was observed between pH 7 and 9. The presence of anions had a negative impact on phosphate removal, and their impact followed the decreasing order CO32- > SO42- > NO3- > Cl-. The increase in adsorbent dosage increased phosphate removal percentage, and 6.67 g/L of MVS-800 dose achieved 99.9% of phosphate removal. It can be concluded that the thermally treated MVS-800 can be used as an effective adsorbent for removing phosphate.