• Title/Summary/Keyword: $H_2$ Production

Search Result 8,610, Processing Time 0.042 seconds

Optimal Temperature for H2 Production and Population Growth of the N2-fixing Unicellular Cyanobacterial Strains from Korean Coasts (한국 연안산 질소고정 단세포 남세균 종주의 최적 성장 및 수소생산 온도)

  • Park, Jongwoo;Kim, Hyungseop;Yih, Wonho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.20-28
    • /
    • 2013
  • Photobiological hydrogen production by nitrogen-fixing unicellular cyanobacteria has long been considered to be an environmentally sound and very promising method for the future supply of renewable clean energy. Using six Korean nitrogen-fixing unicellular cyanobacterial strains and the Synechococcus sp. strain Miami BG043511 we performed cultivation experiments to find out the strain-specific optimal temperature for population growth and $H_2$ production. Under $20^{\circ}C$ the population growth of all the tested strains was significantly retarded in contrasts to the faster and higher growth under 25, 30 or $35^{\circ}C$. The highest growth rates in all the 7 strains were measured under $30^{\circ}C$ while the maximal biomass yields were under $30^{\circ}C$ (strains CB-MAL 026, 054, and 055) or $35^{\circ}C$ (strains 002, 031, 058, and Miami BG043511). The difference between the maximal biomass yields at $30^{\circ}C$ and $35^{\circ}C$ was not greater than 10%. The quantity of photobiologically produced $H_2$ was only slight larger under $35^{\circ}C$ than that under $20^{\circ}C$. Our result may suggest a two-step process of $H_2$ production which includes rapid and sizable production of biomass at $30^{\circ}C$ and the following high $H_2$ production at $20^{\circ}C$ by the test strains of marine nitrogen-fixing unicellular cyanobacteria.

Optimal Production of Poly-$\beta$-hydroxybutyrate and Polysaccharide Methylan by Mentylobacterium organophilum from Methanol (메탄올로부터 Methylobacterium organophilum을 이용한 Poly-$\beta$-hydroxybutyrate와 다당류 Methylan의 최적 생산조건)

  • 김재연;김선원
    • KSBB Journal
    • /
    • v.10 no.2
    • /
    • pp.176-182
    • /
    • 1995
  • The environmental and physiological factors affecting the production of exopolysaccharide (Methylan) and Poly-${\beta}$-hydroxybutyrate(PHB) by Methylobacterium organophilum were investigated. The maximum PHB content was obtained at $38^{\circ}C$ whereas maximum polysaccharide concentration was $3.54g/\ell$ at $30^{\circ}C$. Optimum pH was pH 7-8 for PHB production and pH 6-7 for polysaccharide production, respectively. Under the condition of $Mo^{2+}, Mg^{2+} or Mn^{2+}$ limitation with nitrogenlimitation, the PHB accumulation was increased, whereas the polysaccharide production was decreased as compared with that of solenitrogenlimitation. Under the condition of sole K+ limitation, cell growth was significantly inhibited and no polysaccharide was produced. However, the PHB content was as high as 60% of dry cell weight. Effect of C/N ratios (methanol/ammonium) in the feeding solution was examined for the simultaneous production of polysaccharide and PHB. The higher ratio of C/N showed the lower cell growth, higher content of PHB in cells, and higher yield of polysaccharide.

  • PDF

Optimization of Submerged Culture Conditions for Exo-biopolymer Production by Paecilomyces japonica

  • Bae, Jun-Tae;Sinha, Jayanta;Yun, Jong-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.199-202
    • /
    • 2000
  • Optimization of submerged culture conditions for the production of exo-biopolymer from Paecilomyces japonica was studied. Maltose, yeast extract and potassium phosphate were the most suitable sources of carbon, nitrogen, and inorganic salt, respectively, for both production of the exo-biopolymer and mycelial growth. The optimal culture conditions in flask culture were pH 5.0, $25^{\circ}C$ and 150 rpm in a meidum containing of 30 g maltose, 6 g yeast extract, 2 g polypeptone, 0.5 g $K_2HPO_4$, 0.2 g $KH_2PO_4$, 0.2 g $MnSo_4\;{\cdot}\;5H_2O$, 0.2 g $MgSO_4\;{\cdot}\;7H_2O$ in 1-L distilled water. Exo-biopolymer production and mycelial growth in the suggested medium were significantly increased in a 2.5-L jar fermentor, where the maximum biopolymer concentration was 8 g/1.

  • PDF

Ethanol Induces Autophagy Regulated by Mitochondrial ROS in Saccharomyces cerevisiae

  • Jing, Hongjuan;Liu, Huanhuan;Zhang, Lu;Gao, Jie;Song, Haoran;Tan, Xiaorong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.1982-1991
    • /
    • 2018
  • Ethanol accumulation inhibited the growth of Saccharomyces cerevisiae during wine fermentation. Autophagy and the release of reactive oxygen species (ROS) were also induced under ethanol stress. However, the relation between autophagy and ethanol stress was still unclear. In this study, expression of the autophagy genes ATG1 and ATG8 and the production of ROS under ethanol treatment in yeast were measured. The results showed that ethanol stress very significantly induced expression of the ATG1 and ATG8 genes and the production of hydrogen peroxide ($H_2O_2$) and superoxide anion (${O_2}^{{\cdot}_-}$). Moreover, the atg1 and atg8 mutants aggregated more $H_2O_2$ and ${O_2}^{{\cdot}_-}$ than the wild-type yeast. In addition, inhibitors of the ROS scavenging enzyme induced expression of the ATG1 and ATG8 genes by increasing the levels of $H_2O_2$ and ${O_2}^{{\cdot}_-}$. In contrast, glutathione (GSH) and N-acetylcystine (NAC) decreased ATG1 and ATG8 expression by reducing $H_2O_2$ and ${O_2}^{{\cdot}_-}$ production. Rapamycin and 3-methyladenine also caused an obvious change in autophagy levels and simultaneously altered the release of $H_2O_2$ and ${O_2}^{{\cdot}_-}$. Finally, inhibitors of the mitochondrial electron transport chain (mtETC) increased the production of $H_2O_2$ and ${O_2}^{{\cdot}_-}$ and also promoted expression levels of the ATG1 and ATG8 genes. In conclusion, ethanol stress induced autophagy which was regulated by $H_2O_2$ and ${O_2}^{{\cdot}_-}$ derived from mtETC, and in turn, the autophagy contributed to the elimination $H_2O_2$ and ${O_2}^{{\cdot}_-}$.

Influence of Temperature and pH on Fermentation Pattern and Methane Production in the Rumen Simulating Fermenter (RUSITEC)

  • Bhatta, R.;Tajima, K.;Kurihara, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.376-380
    • /
    • 2006
  • An experiment was conducted to study the effect of temperature and pH on in vitro nutrient degradability, volatile fatty acid profile and methane production. The fermenter used was the semi-continuous system, known as the rumen simulation technique (RUSITEC). Sixteen cylinders were used at one time with a volume of 800 ml, the dilution rate was set at 3.5%/hour, the infused buffer being McDougall's artificial saliva. Basal diet (9.6 g DM) used in RUSITEC consisted of (DM) 6.40 g Timothy hay, 1.86 g crushed corn and 1.34 g soybean meal. The food for the fermentation vessel was provided in nylon bags, which were gently agitated in the liquid phase. The experiment lasted for 17 d with all the samples taken during the last 5 d. Treatments were allocated at random to four vessels each and were (1) two temperature levels of $39^{\circ}C$ and $41^{\circ}C$ (2) two pH levels of 6.0 and 7.0. The total diet contained ($g\;kg^{-1}$ DM) 957 OM, 115 CP and $167MJ\;kg^{-1}$ (DM) GE. Although increase in temperature from $39^{\circ}C$ to $41^{\circ}C$ reduced degradation of major nutrients in vitro, it was non-significant. Interaction effect of temperature with pH also reflected a similar trend. However, pH showed a significant (p<0.05) negative effect on the degradability of all the nutrients in vitro. Altering the in vitro pH from 7 to 6 caused marked reduction in DMD from 60.2 to 41.8, CPD from 76.3 to 55.3 and GED from 55.3 to 35.1, respectively. Low pH (6) depressed total VFA production (61.9 vs. 34.9 mM) as well as acetate to propionate ratio in vitro (from 2.0 to 1.5) when compared to pH 7. Compared to pH 7, total gas production decreased from 1,841 ml to 1,148 ml at pH 6, $CO_2$ and $CH_4$ production also reduced from 639 to 260 ml and 138 to 45 ml, respectively. This study supported the premise that pH is one of the principal factors affecting the microbial production of volatile fatty acids and gas. Regulating the ruminal pH to increase bacterial activity may be one of the methods to optimize VFA production, reduce methane and, possibly, improve animal performance.

Hydrogen Gas Production by Fermentation from Various Sugars Using Clostridium butyricum NCIB 9576 (Clostridium butyricum NCIB 9576에 의한 당으로부터 혐기적 수소생산)

  • Kim, Mi-Sun;Moon, Kwang-Woong;Lee, In-Gu;Lee, Tae-Jin;Sung, Chang-Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.62-69
    • /
    • 1999
  • Clostridium butyricum NCIB 9576 evolved hydrogen gas and produced various organic acids from glucose, lactose, starch, and glycerol. Total amount of hydrogen gas produced from 1 and 2% glucose were 630 and 950ml $H_2$/l-broth, respectively, for the first 24 hrs of incubation and the maximum hydrogen production rates were 42 and 94ml $H_2$/hr/1-broth, respectively. Teh initial pH 6.8 decreased to 4.2~4.5 during the first 12~16 hrs of fermentation when the pH was not controlled, resulting in ceasing the cell growth and hydrogen evolution and in degradation of 82 and 40% glucose after 24hrs of incubation from 1 and 2% glucose, respectively. When pH was controlled to 5.5, glucose was consumed completely and resulted in increasing hydrogen production approximately 38~50% compared to the experiments without the pH control. C. butyricum NCIB 9576 produced hydrogen gas approximately 644, 1,700 and 3,080 ml $H_2$/l-broth with 0.5, 1 and 2% lactose, respectively and the maximum hydrogen production rates were 41, 141 and 179ml $H_2$/hr/l-broth, respectively. All of the lactose added was degraded completely during fermentation even though pH was not controlled. C. butyricum NCIB 9576 produced 183 and 709ml $H_2$/l-broth with 0.1 and 0.5% starch for 48 hrs, respectively, when pH was not controlled. The maximum rates of hydrogen gas production were 43 and 186ml $H_2$/l-broth, respectively and 80~100% of starch added was fermented. Approximately 107ml $H_2$/l-broth was produced using 1% glycerol by C. butyricum NCIB 9576 and the pH was maintained higher than 6.1 during fermentation without pH control. The degradation of glucose, lactose, starch and glycerol by C. butyricum NCIB 9576 were affected by the pH of fermentation broth and the organic acids released during fermentation. The pH of feremtntation broth dropped to 4.2~4.6 after 12~14 hrs incubation when glucose was used as a substrate while pHs were maintained above pH 5 under the same experimental conditions when lactose, starch and glycerol were used. The organic solvents and acids produced during glucose fermentation were mainly ethanol, butyrate, acetate and a little of propionate, while butyrate was the main organic acids during the lactose, starch, and glycerol fermentation by C. butyricum NCIB 9576.

  • PDF

Statistical Optimization of Medium Components for the Production of Biosurfactant by Bacillus licheniformis K51

  • Joshi Joshi;Sanket Sanket;Yadav Sanjay;Nerurkar Anuradha;Desai Anjana J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.313-319
    • /
    • 2007
  • The nutritional medium requirement for biosurfactant production by Bacillus licheniformis K51 was optimized. The important medium components, identified by the initial screening method of Plackett-Burman, were $H_3PO_4,\;CaCl_2,H_3BO_3$, and Na-EDTA. Box-Behnken response surface methodology was applied to further optimize biosurfactant production. The optimal concentrations for higher production of biosurfactants were (g/l): glucose, $1.1;NaNO_3,\;4.4;MgSO_4{\cdot}7H_2O,\;0.8;KCl,\;0.4;CaCl_2,\;0.27;H_3PO_4,\;1.0ml/l;\;and\;trace elements\;(mg/l):H_3BO_3,\;0.25;CuSO_4,\;0.6;MnSO_4,\;2.2;Na_{2}MoO_4,\;0.5;ZnSO_4,\;6.0;FeSO_4,\;8.0;CoCL_2,\;1.0;$ and Na-EDTA, 30.0. Using this statistical optimization method, the relative biosurfactant yield as critical micelle dilution (CMD) was increased from $10{\times}\;to\;105{\times}$, which is ten times higher than the non-optimized rich medium.

Studies on the Lipolytic Enzyme of Molds Part II. Cultural condition of Rhizopus japonicus (사상균(絲狀菌)의 지방분해효소(脂肪分解酵素)에 관(關)한 연구(硏究) 제2보(第2報) 분리사상균(分離絲狀菌) Rhizopus japonicus의 배양조건검토(培養條件檢討))

  • Chung, Man-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.33-41
    • /
    • 1976
  • These experiment were conducted to investigate the cultural condition of the lipase production by Rhizopus japonicus. The results obtained were as follows: 1. Soybean meal and ammonium sulfate were the most effective in the lipase production as organic and inorganic nitrogen sources, respectively. 2. The lipase production was strongly inhibited, when added as carbon sources xylose, glucose, fructose, galactose, maltose, soluble starch, and dextrin causing the lowering of pH of the medium during culture. Sucrose did not inhibit the lipase production, but not caused any effect when added. 3. $K_2HPO_4$ as phosphate salt and $MgSO_4{\cdot}7H_2O$ as magnesium salt were the most effective in the lipase production. 4. The addition of olive oil, soybean oil, and coconut oil respectively increased the enzyme production and especially 1% olive oil increased it by 50%. 5. The enzyme production increased slightly on the addition of yeast extract to $0.05{\sim}0.07%$. 6. The optimum composition of the medium for the lipase production by Rhizopus japonicus was in the composition of soybean meal 2%; $K_2HPO_4{\cdot}$ 0.5%; $(NH_4)_2SO_4$ 0.1%; $MgSO_4\;7H_2O$ 0.05%; yeast extract 0.05%; olive oil 1%. The maximum production of the lipase was attained by the incubation far 48hrs under the optimum incubation condition.

  • PDF

Production of Extracellular Amylase by Bacillus thuringiensis subsp. kurstaki HD-1 and its Characteristics (Bacillus thuringiensis subsp. kurstaki HD-1의 아밀라제 생산과 특성 연구)

  • 김수영;유관희;이영주;이형환
    • Korean journal of applied entomology
    • /
    • v.28 no.2
    • /
    • pp.69-75
    • /
    • 1989
  • The extracellular amylase production by Bacillus thuringiensis subsp. kurstaki HD-l in amylase production media and its characteristics were investigated. The amylase production was highest in the medium composed of 0.2% soluble starch, 1.0% Bacto-peptone, 0.3% beef extract, 0.3% yeast extract, 0.5% NaCl, 0.3% $K_2HPO_4$, 0.1% $KH_2PO_4$, 0.012% $CaCl_2$.$2H_2O$, 0.005% $MnSO_4$.$H_2O$, and 0.03% $MgSO_4$.$7H_2O$. The amylase activity was inhibited by 50mM EDT A. The enzyme was optimally active from pH 6.5 to 7.0 at $55^{\circ}C$, The specific activity of the enzyme in the ethanol precipitate was 2.01 units/mg, and the Km value was approxi-mately 0.8 mg/ml.

  • PDF

Study on the development of small-scale hydrogen production unit using steam reforming of natural gas (천연가스 개질 방식 중소형 고순도 수소제조 장치 개발 연구)

  • Seo, Dong-Joo;Chue, Kuck-Tack;Jung, Un-Ho;Park, Sang-Ho;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.720-722
    • /
    • 2009
  • This work is mainly focused at developing the hydrogen production unit with the capacity of 20 $Nm^3/h$ of high purity hydrogen. At present steam reforming of natural gas is the preferable method to produce hydrogen at the point of production cost. The developed hydrogen production unit composed of natural gas reformer and pressure swing adsorption system. To improve the thermal efficiency of steam reforming reactor, the internal heat recuperating structure was adopted. The heat contained in reformed gas which comes out of the catalytic beds recovered by reaction feed stream. These features of design reduce the fuel consumption into burner and the heat duty of external heat exchangers, such as feed pre-heater and steam generator. The production rate of natural gas reformer was 41.7 $Nm^3/h$ as a dryreformate basis. The composition of PSA feed gas was $H_2$ 78.26%, $CO_2$ 18.49%, CO 1.43% and $CH_4$ 1.85%. The integrated production unit can produce 21.1 $Nm^3/h$ of high-purity hydrogen (99.997%). The hydrogen production efficiency of the developed unit was more than 58% as an LHV basis.

  • PDF