• Title/Summary/Keyword: $H_{12}MDI$

Search Result 28, Processing Time 0.021 seconds

Thermal Stability of Phenylphosphonic Acid Modified Polyurethanes

  • Dong-Eun Kim;Seung-Ho Kang;Sang-Ho Lee
    • Elastomers and Composites
    • /
    • v.58 no.2
    • /
    • pp.70-80
    • /
    • 2023
  • The effect of phenylphosphonic acid (PPOA) on polyurethane (PU) thermal stability was studied through Fourier transform infrared spectroscopy and Thermogravimetric analysis. To synthesize PPOA-modified PUs (PPOA-PUs), polyether-type diols (Mw=62, 106, 190, 419, 605) were chemically modified with PPOA and then reacted with 4,4'-dicyclohexylmethane diisocyanate (H12MDI) and 4,4-diphenylmethane diisocyanate (MDI). During thermal decomposition in air, the PPOA embedded in the PUs formed intumescent phosphocarbonaceous char. Below 400℃, PPOA-H12MDI-PUs were more unstable, as PPOA decomposed at lower temperatures than phenyl groups and aliphatic ethers. Above 550℃, the thermal stability of PUs followed this order: PPOA-MDI-PUs > PPOA-H12MDI-PUs > MDI-PUs > H12MDI-PUs. At 700℃, unmodified PUs had no residue, while the PPOA-MDI-PU residue was 4.4~23.0 wt.% and the PPOA-H12MDI-PU residue was 1.5~17.5 wt.%. The enhanced thermal stability of PPOA-MDI-PUs at high temperatures can be attributed to the synergetic effect of PPOA and phenyl groups on the formation of phosphocarbonaceous char.

Synthesis and Physical Properties of Polycaprolactone Based Polyurethanes Using Aliphatic or Aromatic Diisocyanates (지방족 및 방향족 이소시아네이트를 이용한 폴리카프로락톤계 폴리우레탄의 합성 및 물성 연구)

  • Kim Sun-Mi;Kwak Noh-Seok;Yang Yun-Kyu;Yim Bong-Kyun;Park Bo-Young;Hwang Taek-Sung
    • Polymer(Korea)
    • /
    • v.29 no.3
    • /
    • pp.253-259
    • /
    • 2005
  • Polyurethanes, synthesized by polyester polyols and aliphatic or aromatic diisocyanates for a crease resist finishing agent, were prepared by two-step reactions, that is, prepolymer synthesis and chain extension. The structures of synthesized polyurethanes were confirmed by the measurement of FT-IR and $^1H$-NMR spectrometer. The number average molecular weight ($\bar{M}_n$) and the weight average molecular weight ($\bar{M}_w$) of the polyurethane with aromatic diisocyanate (MDI) were higher than those of the synthesized polyurethanes with aliphatic diisocyanate (HDI, $H_{12}MDI$). The glass transition temperatures ($T_g$) of soft segments in polyurethanes with MDI, HDI, $H_{12}MDI$ were -25,-42 and -50$^{circ}C$, respectively. In the polyurethanes obtained by two-step reaction, thermal stability and tensile strength increased with increasing hard segment contents, whereas elongation at break decreased with increasing hard segment contents.

Effect of the Diisocyanate Type on the Hydrolysis Behavior of Polyurethane

  • Dong-Eun Kim;Seung-Ho Kang;Sang-Ho Lee
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.121-127
    • /
    • 2023
  • The effect of diisocyanate type on the decomposition temperature of polyurethane (PU) hydrolysis was investigated in a subcritical water medium up to 250℃. PU samples were prepared using different types of diisocyanate: two aromatic diisocyanates (4,4'-methylene diphenyl diisocyanate (MDI) and methyl phenylene diisocyanate (TDI)), one unbranched aliphatic diisocyanate (hexamethylene diisocyanate (HDI)), and two cyclic aliphatic diisocyanates (4,4'-methylene dicyclohexyl diisocyanate (H12MDI) and isophorone diisocyanate (IPDI)). The pressure had no effect on hydrolysis in the range of 70-250 bar. The decomposition temperature of the PU samples increased in the following order: TDI-PU (199℃) < H12MDI ≈ IPDI ≈ HDI (218-220℃) < MDI-PU (237℃). This order of increase in temperature is related to the electron-donating ability of the group to connected to the nitrogen of the urethane unit. When the temperature of the (PU + water) mixture reached the specific decomposition temperature, the PU samples hydrolyzed completely within 5 min into primary amine and 1,4-butanediol. The hydrolysis products from MDI-PU and H12MDI-PU were separated into a liquid phase rich in (BD + water) and a solid low phase rich in amine, whereas the products from TDI-, IPDI-, and HDI-PU existed in a single aqueous phase.

Effect of Several Exterior Adhesive Types on Dimensional Stability of Bamboo Oriented Particleboard

  • Iswanto, Apri Heri;Munthe, Rensus;Darwis, Atmawi;Azhar, Irawati;Susilowati, Arida;Prabuningrum, Dita Sari;Fatriasari, Widya
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.277-281
    • /
    • 2019
  • The objective of this research is to evaluate the effect of adhesive types on dimensional stability of bamboo-oriented particleboard. The materials used in this research are bamboo tali(Gigantochloa apus J.A & J.H. Schult. Kurz), UF/MDI(8, 10, 12 % level), and MF, MDI, and PF at 7 % level. Particle and adhesive are mixed using a blending machine; then, mat forming and hot pressing processes are performed using adhesive-suitable temperature and time references. MDI resin is set at $160^{\circ}C$ temperature for 5 minutes. PF resin and MF resin are pressed at $170^{\circ}C$ for 10 minutes, and $140^{\circ}C$ for 10 minutes, respectively, while UF/MDI sets at temperature of $140^{\circ}C$ for 10 minutes. The results show that particleboard using PF resin produces the lowest thickness swelling value. The particleboard using UF/MDI resin also produces good response for thickness swelling value. Interesting things happen in that UF/MDI adhesive produces a thickness swelling value better than that of MDI resin. FTIR analysis on particleboard bonded by UF/MDI resin combination shows the presence of carbonyl group C=O vibration on multi substitution of urea at wave number of around $1,700cm^{-1}$.

Reaction Kinetics between a Cycloaliphatic Diisocyanate(H12MDI) and n-Hexanol (환상지방족 Isocyanate(H12MDI)와 n-Hexanol의 반응속도론)

  • Kim, Taehoon;park, Sungyurb;Park, Sunghoon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.7
    • /
    • pp.1079-1084
    • /
    • 1998
  • Reaction kinetics between 4,4'-dihexyl methane diisocyanate($H_{12}MDI$) and n-hexanol in toluene with dibutyltin dilaurate(DBTDL) as catalyst was studied by experimental measurements and mathematical modeling. Experiments were carried out at various temperatures, catalyst concentrations and [NCO]/[OH] ratios, and the reaction kinetics were described by two second-order reactions, the one between NCO and OH leading to urethane and the other between urethane and NCO leading to allophanate. The rate constants were estimated by the Runge-Kutta 4th-order method. Experiments and mathematical simulations showed a good agreement for various experimental conditions. The [allophanate]/[urethane] ratios at 90% conversion of initial NCO were estimated to be over 20% for most conditions employed in the present study, indicating that allophanate formation might significantly affect the properties of urethane polymers.

  • PDF

Thermal Decomposition Behavior of Blocked Diisocyanates Derived from Mixture of Blocking Agents

  • Lee Jung Min;Subramani Sankaraiah;Lee Young Soo;Kim Jung Hyun
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.427-434
    • /
    • 2005
  • To improve the performance and reduce raw material costs, blocked isocyanates were prepared with mixture of blocking agents in many industries. Three blocked isocyanates (adducts) namely $\varepsilon$-caprolactam/benzotriazole-blocked 4,4'-diphenylmethane diisocyanate (MDI), toluene-2,4-diisocyanate (TDI) and 4,4'-dicyclohexyl-methane diisocyanate ($H_{12}$MDI) were synthesized. Six reference adducts were also prepared by blocking MDI, TDI, and $H_{12}$MDI with $\varepsilon$-caprolactam ($\varepsilon$-CL) or benzotriazole. The reactions were carried out in acetone medium and dibutyltin dilaurate (DBTDL) was used as a catalyst. The progress of the blocking reaction was monitored by IR spectroscopy. De-blocking temperatures (dissociation temperatures) of these adducts were studied using DSC and TGA and the results were correlated. As expected, the thermal analysis data showed that de-blocking temperature of blocked aromatic isocyanates was lower than that of the blocked aliphatic isocyanates. The low de-blocking temperature of blocked aromatic isocyanate could be due to electron withdrawing benzene ring present in the blocked isocyanates. It was also found that benzotriazole-blocked adducts de-blocked at higher temperature compared with $\varepsilon$-CL-blocked adducts.

A Study on Synthesis of Polyurethane/Functionalized Graphene Nanocomposites by In-situ Intercalation Method (In-situ 법에 의한 폴리우레탄/기능화 된 그래핀 나노복합체의 합성에 관한 연구)

  • Hwang, Soo-Ok;Lee, Byung-Hwan;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.238-245
    • /
    • 2012
  • Graphene oxide was synthesized from natural graphite, and its surface was modified using diisocyanatodicyclohexylmethane( $H_{12}MDI$). Isocyanate-graphene sheet(i-RGO) was obtained by reduction of surface modified GO. To select nanofiller having good dispersion with polyurethane, GO, i-RGO, natural graphite and thermal reduced graphite were analyzed, and then i-RGO was selected as a suitable nanofiller. PU/i-RGO nanocomposite was synthesized with various i-RGO contents to estimate effect of reinforcement on nanocomposite. Thermal stability, hardness, contact angle were increased with i-RGO contents due to i-RGO characteristic and crosslink bridge effect. But, tensile strength and elongation were decreased at i-RGO contents more than the 4 wt%. This phenomenon was interpreted by the excess formation of crosslink bridge.

Characteristics of Low Density Fiberboards Bonded with Different Adhesives for Thermal Insulation (II) - Formaldehyde·Total Volatile Organic Compounds Emission Properties and Combustion Shapes - (다양한 접착제로 제조한 단열재용 저밀도섬유판의 특성(II) - 폼알데하이드·총휘발성유기화합물 방출 특성 및 연소 형상 -)

  • Jang, Jae-Hyuk;Lee, Min;Kang, Eun-Chang;Lee, Sang-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.580-587
    • /
    • 2017
  • Woodfiber insulation board can be considered as a one of the key material for low energy consumption, comfortable and safety construction of residential space because of its eco-friendly and high thermal insulation performance. This study was carried out to investigate the formaldehyde (HCHO) total volatile organic compounds (TVOC) emission properties and combustion shapes by flame test of low density fiberboards (LDFs) prepared with different adhesives. HCHO TVOC emission and combustion properties of LDFs prepared by melamine urea formaldehyde (MUF), phenol formaldehyde (PF), emulsified methylene diphenyl diisocyanate (eMDI) and latex resin adhesives were measured by desiccator method, 20 L chamber method, and flame test, respectively. As results, LDFs manufactured by MUF, eMDI and latex resin adhesives satisfied the Super $E_0$ grade of HCHO emission performance except PF resin. Furthermore, TVOC emission of all LDFs were satisfied the Korean indoor air quality standard (below $400{\mu}g/m^2{\cdot}h$). Especially, LDF with eMDI resin adhesive showed the lowest HCHO and TVOC emissivity, that $0.14mg/{\ell}$, $12{\mu}g/m^2{\cdot}h$, respectively. However, eMDI emitted the small amount ($3{\mu}g/m^2{\cdot}h$) of toluene in VOC components. In the flame test, LDF with MUF resin adhesives showed the most favorable shape after flame test compare to LDFs prepared other adhesives. Based on HCHO and TVOC emission, and combustion shapes, MUF resin adhesive may be recommended to prepare LDF for insulation purpose.

Synthesis and Characterization of Waterborne Polyurethane for Water Resistance (내수성 향상을 위한 수성 폴리우레탄의 합성 및 특성)

  • Choi, Min Ji;Jeong, Boo Young;Cheon, Jung Mi;Park, Kuenbyeol;Chun, Jae Hwan
    • Journal of Adhesion and Interface
    • /
    • v.18 no.1
    • /
    • pp.8-12
    • /
    • 2017
  • In this study, waterborne polyurethane was synthesized with polyester polyol, poly(propylene carbonate) (PPC), 4,4-dicyclohexylmethane diisocyanate ($H_{12}MDI$) and dimethylol propionic acid (DMPA) to improve the water resistance. The properties of the synthesized waterborne polyurethane using poly(propylene carbonate) (WPUP) was evaluated through FT-IR, GPC, DSC and UTM. The mechanical properties were increased with the increase in the amount of PPC. When the ratio of polyester polyol to poly(propylene carbonate) is 9:1, the highest water resistance was showed.

Preparation and Properties of Polyurethane Dispersions with Aromatic/Aliphatic Mixed Diisocyanate (방향족/지방족 혼합 Diisocyanate를 포함하는 Polyurethane 분산체의 제조와 성질)

  • Kim, Hyoung Sug;Noh, Si Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.258-265
    • /
    • 2009
  • An anionic polyurethane dispersions (PUDs) were synthesized from the poly (tetramethylene glycol) (PTMG, Mw = 2000 g/mol), mixed isocyanate of dicyclohexylmethane-4,4'-diisocyanate $(H_{12}-MDI)$ and 4,4'-diphenylmethane diisocyanate (MDI), and dimethylol propionic acid (DMPA) as anionic site, following a prepolymer mixing process. Triethylamine (TEA) was used as a neutralization agent and the ethylenediamine (EDA) as the chain extender of the prepolymer. The effects of the DMPA molar ratio and aromatic diisocyanate content in the mixed isocyanate on the particle size and viscosity of PUD were studied. Also, the mechanical and thermal properties of the PUD cast films were discussed according to the molar ratio of DMPA and aromatic isocyanate content. It was found that the particle size and the viscosity of an anionic PUD decreased with increasing DMPA molar ratio but increased with increasing aromatic isocyanate (MDI) content in the mixed isocyanate at the constant DMPA content. Tensile strength of the PUD cast films increased and elongation at break decreased with increasing DMPA content at the constant mixed isocyanate molar ratios. In thermal degradation temperature of PUD cast films, the effect of DMPA contents was great but the effect of aromatic isocyanate contents at the low DMPA content was very slight respectively.