• Title/Summary/Keyword: $GeneFishing^{TM}$ technique

Search Result 2, Processing Time 0.017 seconds

Difference of Gene Expression in Venous Malformation (정맥기형 환자에 있어서의 유전자 발현 차이)

  • Kim, Taek Kyun;Oh, Eun Jung;Cho, Byung Chae;Chung, Ho Yun
    • Archives of Plastic Surgery
    • /
    • v.34 no.6
    • /
    • pp.671-678
    • /
    • 2007
  • Purpose: Venous malformation(VM) which often causes pain and discomfort is the most common type of vascular malformations. Although it is presented with disfigured appearance and associated soft tissue or skeletal hypertrophy, the molecular bases of VMs are poorly understood. Differentially expressed genes(DEGs) of VMs were investigated to illuminate the molecular mechanism of the disease entity. Methods: Gene expressions of VM patients' subcutaneous tissue were studied in comparison with normal persons' by $GeneFishing^{TM}$ technique using the annealing control primers (ACPs) to identify DEGs. Candidate genes were sequenced and screened by basic local alignment search tool (BLAST) afterwards. Results: Among seventy DEGs identified, forty DEGs which had shown significantly different expression pattern were sequenced. Twenty eight out of 40 were up-regulated while 12 were down-regulated. BLAST searches revealed that 37 were known genes and 3 were unknown genes. Many genes were involved in the differentiation and remodeling of smooth muscle cells, opposed to the previous hypothesis that a lot of angiogenetic genes would be involved. Furthermore, several transcription factors and related genes, as well as cell signaling and metabolism regulators, were up regulated. Conclusion: It suggests that analysis of DEGs in VMs provide basic knowledge about its pathophysiology. and new therapeutic approaches.

GRIM-19 Expression and Function in Human Gliomas

  • Jin, Yong-Hao;Jung, Shin;Jin, Shu-Guang;Jung, Tae-Young;Moon, Kyung-Sub;Kim, In-Young
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.1
    • /
    • pp.20-30
    • /
    • 2010
  • Objective : We determined whether the expression of GRIM-19 is correlated with pathologic types and malignant grades in gliomas, and determined the function of GRIM-19 in human gliomas. Methods : Tumor tissues were isolated and frozen at $-80^{\circ}C$ just after surgery. The tissues consisted of normal brain tissue (4), astrocytomas (2), anaplastic astrocytomas (2), oligodendrogliomas (13), anaplastic oligodendrogliomas (11), and glioblastomas (16). To profile tumor-related genes, we applied RNA differential display using a $Genefishing^{TM}$ DEG kit, and validated the tumor-related genes by reverse transcription polymerase chain reaction (RT-PCR). A human glioblastoma cell line (U343MG-A) was used for the GRIM-19 functional studies. The morphologic and cytoskeletal changes were examined via light and confocal microscopy. The migratory and invasive abilities were investigated by the simple scratch technique and Matrigel assay. The antiproliferative activity was determined by thiazolyl blue Tetrazolium bromide (MTT) assay and FACS analysis. Results : Based on RT-PCR analysis, the expression of GRIM-19 was higher in astrocytic tumors than oligodendroglial tumors. The expression of GRIM-19 was higher in high-grade tumors than low-grade tumors or normal brain tissue; glioblastomas showed the highest expression. After transfection of GRIM-19 into U343MG-A, the morphology of the sense-transfection cells became larger and more spindly. The antisensetransfection cells became smaller and rounder compared with wild type U343MG-A. The MTT assay showed that the sense-transfection cells were more sensitive to the combination of interferon-$\beta$ and retinoic acid than U343MG-A cells or antisense-transfection cells; the antiproliferative activity was related to apoptosis. Conclusion : GRIM-19 may be one of the gene profiles which regulate cell death via apoptosis in human gliomas.