• Title/Summary/Keyword: $Gd_2O_3$

Search Result 375, Processing Time 0.025 seconds

Refinement of Gd2O3 inclusions in the GdBa2Cu3O7-δ films fabricated by the RCE-DR process

  • Park, I.;Oh, W.J.;Lee, J.H.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.46-49
    • /
    • 2018
  • To improve in-field critical current densities ($J_c$) of $GdBa_2Cu_3O_{7-{\delta}}$ (GdBCO) coated conductors(CCs) fabricated by the reactive co-evaporation by deposition and reaction (RCE-DR) process, employing the nominal composition of Gd:Ba:Cu=1:1:2.5, we tried to refine the $Gd_2O_3$ particles trapped in the GdBCO superconducting matrix. For this purpose, we carefully selected the processing conditions on the stability phase diagram of GdBCO for this composition. By lowering the growth temperature of $Gd_2O_3$ in the liquid, we could refine the average particle size of $Gd_2O_3$ particles trapped in the GdBCO matrix and also achieve the zero-resistive transition temperatures ($T_{c,zero}$) of 92.3~94.2 K. Unfortunately, however, it was unsuccessful to achieve enhanced in-field $J_c$ values from these samples because of an air-contamination of the amorphous precursor film before its conversion into crystalline GdBCO film, suggesting that any exposure of the amorphous precursor film to air is fatal in obtaining high performance GdBCO CCs via the RCE-DR process.

Mossbauer Studies of Perovskite $Gd_{1-x}Sr_xFeO_{3-y}$ (X = 0.0, 0.5) (Perovskite $Gd_{1-x}Sr_xFeO_{3-y}$ (X = 0.0, 0.5)의 Mossbauer연구)

  • 엄영랑;김철성;서정철;오영제
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.2
    • /
    • pp.67-73
    • /
    • 1998
  • Crystallographic and magnetic properties of perovskite $Gd_{1-x}Sr_xFeO_{3-y}$ (x=0.0, 0.5) substituted $Sr^{2+}$ having larger inoic radius than $Gd^{3+}$ at GdFeO$_3$have been studied by x-ary diffraction, M$\ "{o}$ssbauer spectroscopy, and VSM. The cystal structures are found to be orthorhombic with the lattice parameters : $a_o=5.53\;{\AA},\;b_o=5.608\;{AA},\;C_o=7.724\;{\AA}$ for $Gd_{0.5}Sr_{0.5}FeO_{3-y}$ (x=0.0, 0.5) have been investigated over temperature range from 4.2 to 690 K using the M$\ "{o}$ssbauer technique. The Neel temperatuer of $Gd_{1-x}Sr_xFeO_{3-y}$ system is 690 K with x value of 0.0 and 515 K with x value of 0.5. Analysis of M$\ "{o}$ssbauer spectra Mohr's salt analysis for $Gd_{1-x}Sr_xFeO_{3-y}$ demonstrated the existence of the mixed valence states of iron and the coordination state of $Fe^{3+}$ and $Fe^{4+}$ ions. The Corresponding hyperfine parameters for GdFeO$_3$ are compatible with S=5/2 $Fe^{3+}$ in octahedral cooedination.l cooedination.

  • PDF

Dispersion and Shape Control on Nanoparticles of Gd2O3:Eu3+ Red Phosphor Prepared by Template Method (주형법으로 제조된 Gd2O3:Eu3+ 적색 형광체의 나노입자 분산 및 형상제어)

  • Park, Jeong Min;Ban, Se Min;Jung, Kyeong-Youl;Choi, Byung-Ki;Kang, Kwang-Jung;Kim, Dae-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.534-543
    • /
    • 2017
  • $Gd_2O_3:Eu^{3+}$ red phosphors were prepared by template method from crystalline cellulose impregnated by metal salt. The crystallite size and photoluminescence(PL) property of $Gd_2O_3:Eu^{3+}$ red phosphors were controlled by varying the calcination temperature and $Eu^{3+}$ mol ratio. The nano dispersion of $Gd_2O_3:Eu^{3+}$ was also conducted with a bead mill wet process. Dependent on the time of bead milling, $Gd_2O_3:Eu^{3+}$ nanosol of around 100 nm (median particle size : $D_{50}$) was produced. As the bead milling process proceeded, the luminescent efficiency decreased due to the low crystallinity of the $Gd_2O_3:Eu^{3+}$ nanoparticles. In spite of the low PL property of $Gd_2O_3:Eu^{3+}$ nanosol, it was observed that the photoluminescent property was recovered after re-calcination. In addition, in the dispersed nanosol treated at $85^{\circ}C$, a self assembly phenomenon between particles appeared, and the particles changed from spherical to rod-shaped. These results indicate that particle growth occurs due to mutual assembly of $Gd(OH)_3$ particles, which is the hydration of $Gd_2O_3$ particles, in aqueous solvent at $85^{\circ}C$.

Effects of Powder Property and Sintering Atmosphere on the Properties of Burnable Absorber Fuel : I. $UO_2-Gd_2O_3$ Fuel

  • K. W. Song;Kim, K. S.;H. S. Yoo;Kim, J. H.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.171-176
    • /
    • 1997
  • UO$_2$-Gd$_2$O$_3$fuel has been sintered to study the effect of powder property and sintering atmospheres on densification and microstructure. Three types of powders have been used; AUC-UO$_2$ powder and ADU-UO$_2$ powder were mixed with Gd$_2$O$_3$ Powder, and co-milled AUC-UO$_2$ and Gd$_2$O$_3$ powder. UO$_2$-(2, 5, 10)wt% Gd$_2$O$_3$pellets have been sintered at 168$0^{\circ}C$ for 4 hours in the mixture of H$_2$ and $CO_2$ gases, of which oxygen potential has been controlled by the ratio of $CO_2$ to H$_2$ gas. Densities of UO$_2$-Gd$_2$O$_3$ fuel pellets are quite dependent on powder types, and UO$_2$-Gd$_2$O$_3$ fuel using co-milled UO$_2$ powder yields the highest density. A long range homogeneity of Gd is determined by powder mixing. As the oxygen potential of sintered atmosphere increases, the sintered densities of UO$_2$-Gd$_2$O$_3$ pellets decrease but grain size increases. In addition, (U, Gd)O$_2$ solid solution becomes more homogeneous. The UO$_2$-Gd$_2$O$_3$fuel having adequate density and homogeneous microstructure can be fabricated by co-milling powder and by high oxygen potential.

  • PDF

An approach to minimize reactivity penalty of Gd2O3 burnable absorber at the early stage of fuel burnup in Pressurized Water Reactor

  • Nabila, Umme Mahbuba;Sahadath, Md. Hossain;Hossain, Md. Towhid;Reza, Farshid
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3516-3525
    • /
    • 2022
  • The high capture cross-section (𝜎c) of Gadolinium (Gd-155 and Gd-157) causes reactivity penalty and swing at the initial stage of fuel burnup in Pressurized Water Reactor (PWR). The present study is concerned with the feasibility of the combination of mixed burnable poison with both low and high 𝜎c as an approach to minimize these effects. Two considered reference designs are fuel assemblies with 24 IBA rods of Gd2O3 and Er2O3 respectively. Models comprise nuclear fuel with a homogeneous mixture of Er2O3, AmO2, SmO2, and HfO2 with Gd2O3 as well as the coating of PaO2 and ZrB2 on the Gd2O3 pellet's outer surface. The infinite multiplication factor was determined and reactivity was calculated considering 3% neutron leakage rate. All models except Er2O3 and SmO2 showed expected results namely higher values of these parameters than the reference design of Gd2O3 at the early burnup period. The highest value was found for the model of PaO2 and Gd2O3 followed by ZrB2 and HfO2. The cycle burnup, discharge burnup, and cycle length for three batch refueling were calculated using Linear Reactivity Model (LRM). The pin power distribution, energy-dependent neutron flux and Fuel Temperature Coefficient (FTC) were also studied. An optimization of model 1 was carried out to investigate effects of different isotopic compositions of Gd2O3 and absorber coating thickness.

Photoluminance Properties of ${Al_3}{GdB_4}{O_{12}}$ Phosphors Activated by $Tb^{3+} and Eu^{3+}$ ($Tb^{3+}$ 와 Eu^{3+}$로 활성화시킨${Al_3}{GdB_4}{O_{12}}$ 형광체의 발광 특성)

  • Kim, Ki-Woon;Kang, Sei-Sun;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.49-54
    • /
    • 2000
  • The new green $Al_3GdB_4O_{12}:Tb^{3+} and red Al_3GdB_4O_{12}:Eu_{3+}$ phosphors were synthesized and then characterized their optical properties for PDP application. And also the photoluminescence properties of these phosphors were compared with the commercial green $Zn_2SiO_4:Mn^{2+} and (Y,Gd)BO_3: Eu^{3+}$ red PDP phosphors. The phosphors were synthesized by solid state reaction at 115$0^{\circ}C$ for 4hr. It was found that the emitting brightness of $Al_3GdB_4O_{12}:Tb^{3+}$(15mol%) green phosphor under 147nm excitation was higher than that of commercial $Zn_2SiO_4: Mn^{2+}$ green PDP phosphor. However, the color coordinate of this new green phosphor was inferior to the commercial one. On the other hand, the emitting intensity of $Al_3GdB_4O_{12}:Eu^{3+}$(15mol%) red phosphor was smaller than the $commercial(Y,Gd)BO_3: Eu^{3+}$ red one, but the CIE coordinate was slightly improved. The excitation spectrum showed that $Al_3GdB_4O_{12}$ phosphors had a strong excitation band at $\lambda=160nm$ associated with the host absorption. And the photoluminance excitation (PLE) intensity in VUV range for $Al_3GdB_4O_{12}:Tb^{3+}$ green phosphor was higher than that of $Zn_2SiO_4: Mn^{2+}$, but the PLE intensity of $Al_3GdB_4O_{12}:Eu^{3+}$ red phosphor was smaller than $(Y,Gd)BO_3: Eu^{3+}$.

  • PDF

Synthesis of Gd2O3 : (Li, Eu) Films using Phosphor Powders Coated with SiO2 Nano Particles (SiO2 나노 입자로 코팅된 형광체 분말을 이용한 Gd2O3 : (Li, Eu) 필름 제조)

  • Park, Jung-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.619-624
    • /
    • 2003
  • The $Gd_{1.9-x}Li_{0.1}Eu_xO_3$ (x=0.02, 0.05, 0.08, and 0.12) powders (${\thickapprox}1{\mu}m$) synthesized by sol-gel method, whose surfaces are modified in a colloidal silica suspension (size of $SiO_2$ particles: ${\sim}30$ nm), have been fabricated to highly stable and effective luminescent films on the glass substrates. Thanks to the fused $SiO_2$ nano particles in the vicinity of the glass softening temperature (at around $700^{\circ}C$), $Gd_{1.9-x}Li_{0.1}Eu_xO_3$ powders are strongly attached onto the surface of glass substrate (>9H, pencil hardness tester). This simple and low-cost method to get $Gd_{1.9-x}Li_{0.1}Eu_xO_3$ phosphor films without any loss of luminescence brightness would promise for applications to display devices.

Photoluminescent properties of red phosphor (Y,Gd)$_2$O$_3$: Eu for plasma display panel synthesized by homogeneous precipitation method (균일침전법으로 제조한 플라즈마 디스플레이용 적색 형광체 (Y,Gd)$_2$O$_3$: Eu의 발광특성)

  • 김유혁;김좌연
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.400-406
    • /
    • 2000
  • The fired Precursor (Y,Gd,Eu)(OH)$CO_3$.$H_2O$$900^{\circ}C$ was used to synthesize the red phosphor $(Y,Gd)_2O_3$: Eu for plasma display panel. Rounded and ~l $\mu\textrm{m}$ diameter phosphor $(Y,Gd)_2O_3$: Eu can be obtained by the reaction of aformentioned powder with a small amount addition of flux at $1350^{\circ}C$ for 2 hours. Emission spectra of these phosphors were measured under excitation wavelength at 254 nm and 147 nm and the optimum concentrations of activator ion were determined at around 15 mo1e % and 10 mole % under these conditions, respectively. $BaCO_3$flux had the best property in emission intensity among the prepared $BaCO_3AlF_3$and $Li_3PO_4$phosphors. The properties of optimized sample were improved in terms of relative luminance and color coordinate comparing with commercial phosphor such as $Y_2O_3$: Eu.

  • PDF

Synthesis and Characterization of Gd1-xSrxMnO3 as Cathodic Material for Solid Oxide Fuel Cell (고체산화물 연료전지의 양극재료로서 Gd1-xSrxMnO3의 합성 및 특성평가)

  • 윤희성;최승우;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.145-150
    • /
    • 1999
  • Gd1-xSrxMnO3(0$\leq$X$\leq$0.6) as the cathode for solid oxide fuel cell was synthesized by citrate process and studied for its crystal structure, electrical conductivity, thermal expansion coefficient (TEC), and investigated reactivity with 8 mol% yttria stabilized zirconia(8YSZ) or Ce0.8Gd0.2O1.9 (CGO). The crystal structure of Gd1-xSrxMnO3 changed from orthorhombic (0$\leq$X$\leq$0.3) through cubic (0.4$\leq$X$\leq$0.5) to tetragonal structure (X=0.6). When Sr contents was increased, the electrical conductivity of Gd1-xSrxMnO3 was inthose of La1-xSrxMnO3, 8YSZ and CGO if Sr content was above 30mol%. TEC of Gd1-xSrxMnO3 was increased with Sr content. After heat treatment at 1300$^{\circ}C$ for 48 hours, reaction product of Gd1-xSrxMnO3 and 8YSZ was SrZrO3. However CGO had no reaction product with Gd1-xSrxMnO3.

  • PDF