• Title/Summary/Keyword: $G_2$-M transition

Search Result 257, Processing Time 0.026 seconds

The Effects of Loranthus parasiticus Merr. on Cell Cycle and Expression of Related Genes in HepG2 Cell (상기생(桑寄生)이 HepG2 cell의 세포분열 및 관련유전자 발현에 미치는 영향)

  • Rhew, Kwang-Yul;Kim, Young-Chul;Woo, Hong-Jung;Lee, Jang-Hoon
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.60-73
    • /
    • 2005
  • Objectives : The aim of this study was to evaluate the effects of Loranthus parasiticus Merr. on cell cycle and expression of related genes in HepG2 cells. Methods : The MTT assay, cell counting assay, $[^3H]-Thymidine$ incorporation assay, flow cytometric analysis, quantitative RT-PCR and western blot assay were studied. Results : In the water extract of Loranthus parasiticus Merr., inhibition of cell proliferation and DNA synthesis in HepG2 cells was seen. These inhibitory effects were due to inhibition of G l-S transition in cell cycle. After treatment with the extract, expression of cyclin D1(G1 check point related gene) was inhibited particularly in dose-dependent and time-dependent manners. Conclusion : These results suggest that the inhibition of cell cycle progression by Loranthus parasiticus Merr. in HepG2 cell is due to suppression of cyclin D1(G1 check point related gene) mRNA expression and protein synthesis.

  • PDF

Cell Cycle-Dependent Activity Change Of $Ca^{2+}/$Calmodulin-Dependent Protein Kinase II In NIH 3T3 Cells

  • Kim, Dae-Sup;Suh, Kyong-Hoon
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.212-218
    • /
    • 2001
  • Although the blockage of a cell cycle by specific inhibitors of $Ca^{2+}/$calmodulin-dependent protein kinase II (CaMK-II) is well known, the activity profile of CaMK-II during the cell cycle in the absence of any direct effectors of the enzyme is unclear. The activity of native CaMK-II in NIH 3T3 cells was examined by the use of cell cycle-specific arresting and synchronizing methods. The total catalytic activity of CaMK-II in arrested cells was decreased about 30% in the M phase, whereas the $Ca^{2+}$-independent autonomous activity increased about 1.5-fold in the M phase and decreased about 50% at the G1/S transition. The in vivo phosphorylation level of CaMK-II was lowest at G1/S and highest in M. The CaMK-II protein level was unchanged during the cell cycle. When the cells were synchronized, the autonomous activity was increased only in M. These results indicate that the physiologically relevant portion of CaMK-II is activated only in M, and that the net activation of CaMK-II is required in mitosis.

  • PDF

Immobilization of Late Transition Metal Catalyst on the Amino-functionalized Silica and Its Norbornene Polymerization (아미노-기능화된 실리카 위 후전이 금속 촉매 담지 및 이를 이용한 노보넨 중합)

  • Pacia, Rose Mardie P.;Kim, So Hui;Lee, Jeong Suk;Ko, Young Soo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.313-318
    • /
    • 2016
  • In this study, an amorphous silica was functionalized with aminosilane, N-[(3-trimethoxysilyl)propyl]ethylenediamine (2NS) and the late transition metal catalysts including ($(DME)NiBr_2$ and $PdCl_2$(COD)) were subsequently immobilized on the functionalized amorphous silica for norbornene polymerization. Effects of the polymerization temperature, polymerization time, Al/Ni molar ratio, and type of co-catalyst on norbornene polymerization were investigated. Unsupported late transition metal catalysts did not show any activities for norbornene polymerization. However, the $SiO_2$/2NS/Ni catayst with MAO system, with increasing polymerization temperature, increased the polymerization activity and decreased the molecular weight of the polynorbornene (PNB). Furthermore, the catalyst when increasing polymerization temperature caused the decrease in both the polymerization activity and molecular weight of PNB. This confirmed that the stability of $SiO_2$/2NS/Ni at a high temperature was greater than that of $SiO_2$/2NS/Pd. Also the longer polymerization time resulted in the higher conversion of norbornene for both catalysts. When the Al : Ni molar ratio was 1000 : 1, the highest activity (15.3 kg-PNB/($({\mu}mol-Ni^*hr$)) but lowest molecular weight ($M_n$ = 124,000 g/mol) of PNB were achieved. Also $SiO_2$/2NS/Ni catalyst with borate/TEAL resulted in diminishing the polymerization activity and molecular weight of PNB with increasing the polymerization temperature.

Transition of Isc according to Natural Solar Spectrum on c-Si and a-Si PV Module (결정질과 비정질 PV모듈의 자연광 스펙트럼에 따른 Isc의 변화)

  • Kong, Ji-Hyun;Ji, Yang-Geun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Geun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.86-91
    • /
    • 2009
  • In this paper, we analyze the Transition of Isc by natural solar spectrum of c-Si and a-Si PV module. Commonly, performance of photovoltaic (PV) module is estimated under the standard test condition (STC). That is, solar irradiance $1kW/m^2$, solar spectrum distribution: AM1 5G, module temperature $25^{\circ}C$ This means it rarely meets actual outdoor conditions. The solar spectrum always changes. So it is rare to fit the standard solar spectrum AM1 5G defined in ASTM G173-03 or IEC 60904-3. Thus spectral response of PV module is different depending on the material. so we estimated the variation of Isc at every minutes by comparing c-Si PV module with a-si PV module for outdoor conditions.

  • PDF

Power Consumption for Double-Stage Paddle Impeller in Cylindrical and Spherical Agitated Vessels (원통 및 구형교반조에서의 2단 Paddle 임펠러에 대한 소요동력)

  • Lee, Young-Sei;Choi, Hyun-Kuk;Shida, Hirotaka
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.247-253
    • /
    • 2006
  • Power consumption for double-stage paddle impeller in spherical and cylindrical agitated vessel was measured over a wide range of Reynolds number from laminar to turbulent flow regions. The power correlation was obtained which was applied to both spherical and cylindrical vessel, when the apparent diameter of the spherical vessel was equal to the diameter of the cylindrical vessel which had a height equal to its diameter and had the same volume as the spherical vessel. The power consumption for the double-stage impeller was dependent upon the distance of among the impeller in the agitated vessels, as follows: $$f/2={\frac{C_L}{Re_G}}+{\frac{Ct}{2}}({\frac{C_tr}{Re_g}}+Re_g)^{-m}$$

  • PDF

Effects of Adsorption Sites of the Polycrystalline Ir Surface on Potentially Deposited H (수소 전착에 관한 다결정 Ir표면의 흡착부위 효과)

  • Chun Jang Ho;Mun Kyeong Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.144-149
    • /
    • 1999
  • The two distinct adsorption sites and transition between the under and over-potentially deposited hydrogen (UPD H and OPD H) on the polycrystalline iridium (poly-Ir) surface in the 0.2 M LiOH electrolyte have been studied using the phase-shift method. At the forward and backward scans, the UPD H peak occurs on the cyclic voltam-mogram. The transition region on the phase-shift profile or the Langmuir adsorption isotherm occurs at ca. -0.80 to -0.95 V vs. SCE. At the transition region (-0.80 to -0.95 V vs. SCE), the equilibrium constant (K) for H adsorption transits from $7.9\times10^{-2}\;to\;1.5\times10^{-4}$ and vice versa. Similarly, the standard free energy $({\Delta}G_{ads})$ of H adsorption transits from 6.3 to 21.8kJ/mol and vice versa. The UPD H and OPD H on the poly-Ir surface act as two distinguishable electroadsorbed H species. Both the UPD H peak and the transition region are attributed to the two distinct adsorption sites of the UPD H and OPD H on the poly-Ir surface.

TC1 (C8orf4) is involved in ERK1/2 pathway-regulated G1- to S-phase transition

  • Wang, Yi-Dong;Bian, Guo-Hui;Lv, Xiao-Yan;Zheng, Rong;Sun, Huan;Zhang, Zheng;Chen, Ye;Li, Qin-Wei;Xiao, Yan;Yang, Qiu-Tan;Ai, Jian-Zhong;Wei, Yu-Quan;Zhou, Qin
    • BMB Reports
    • /
    • v.41 no.10
    • /
    • pp.733-738
    • /
    • 2008
  • Although previous studies have implicated a role for TC1 (C8orf4) in cancer cell proliferation, the molecular mechanism of its action is still largely unclear. In this study, we showed, for the first time, that the mRNA levels of TC1 were upregulated by mitogens (FBS/thrombin) and at least partially, through the ERK1/2 signaling pathway. Interestingly, the over-expression of TC1 promoted the $G_1$- to S-phase transition of the cell cycle, which was delayed by the deficiency of ERK1/2 signaling in fibroblast cells. Furthermore, the luciferase reporter assay indicated that the over-expression of TC1 significantly increased Cyclin D1 promoter-driven luciferase activity. Taken together, our findings revealed that TC1 was involved in the mitogen-activated ERK1/2 signaling pathway and positively regulated $G_1$- to S-phase transition of the cell cycle. Our results may provide a novel mechanism of the role of TC1 in the regulation of cell proliferation.

Choline chloride-Glycerol (1:2 mol) as draw solution in forward osmosis for dewatering purpose

  • Dutta, Supritam;Dave, Pragnesh;Nath, Kaushik
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.63-72
    • /
    • 2022
  • Choline chloride-glycerol (1:2 mol), a natural deep eutectic solvent (NADES) is examined as a draw solution in forward osmosis (FO) for dewatering application. The NADES is easy to prepare, low in toxicity and environmentally benign. A polyamide thin film composite membrane was used. Characterization of the membrane confirmed porous membrane structure with good hydrophilicity and a low structural parameter (722 ㎛) suitable for FO application. A dilute solution of 20% (v/v) NADES was enough to generate moderate water flux (14.98 L m-2h-1) with relatively low reverse solute flux (0.125 g m-2h-1) with deionized water feed. Application in dewatering industrial wastewater feed showed reasonably good water flux (11.9 L m-2h-1) which could be maintained by controlling the external concentration polarization and fouling/scaling mitigation via simple periodic deionized water wash. In another application, clarified sugarcane juice could be successfully concentrated. Recovery of the draw solute was accomplished easily by chilling utilizing thermo responsive phase transition property of NADES. This study established that low concentration NADES can be a viable alternative as a draw solute for dewatering of wastewater and other heat sensitive applications along with a simple recovery process.

Preparation of Porous Glasses by the Phase-separation of the Silicate Glass Containing $TiO_2$ ($TiO_2$를 함유한 규산염 유리의 상분리를 이용한 다공질 유리의 제조)

  • 김병훈;최석진;박태철
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.29-36
    • /
    • 1991
  • Microporous glasses in the system TiO2-SiO2-Al2O3-B2O3-CaO-Na2O were prepared by the phase-separation technique. Morphology and distribution of pore and specific surface area of glasses heated and leached out at various conditions were investigated by SEM and Porosimeter. Crystallization of glasses heated above transition temperature was also inspected by X-ray diffraction method. When the heating temperature and time increased, the pore size and volume increased, but the specific surface area decreased above the critical temperature. The phase-separation, specific surface area and pore size showed more sensitive change on the variation of heating temperature than of heating time. The specific surface area and micropore volume of porous glasses prepared in this study were about 120-330$m^2$/g and 0.001-0.01cc/g, respectively. Mean pore size of porous glasses were about 20-90$\AA$. Anatase phases was deposited when the parent glass was heat-treated at 75$0^{\circ}C$ for 6hrs.

  • PDF

Synthesis of PLLA-block-PMMA Copolymer and Characteristics of Biaxially Oriented PLA Film Including the Same (PLLA-block-PMMA 공중합수지의 합성 및 이를 포함하는 PLA 이축연신 필름의 특성)

  • Kim, Moon-Sun;Lee, Sangeun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.251-258
    • /
    • 2015
  • In the study, PLLA with 12,000 g/mol ($M_n$) and 14,000 g/mol ($M_w$) was synthesized from L-lactide, and used to synthesize PLLA-Br intermediate. PLLA-block-PMMA with 84,000 g/mol ($M_n$) and 126,000 g/mol ($M_w$) was finally synthesized from PLLA-Br intermediate. The glass transition temperature ($T_g$) and initial pyrolysis temperature of PLLA-block-PMMA are $95.5^{\circ}C$ and $289^{\circ}C$, respectively. The PLA film of $50{\pm}3{\mu}m$ thickness was prepared by blending PLA with 9 phr PLLA-block-PMMA followed by stretching biaxially at 3 times under $95^{\circ}C$, and annealing at $120^{\circ}C$ for 2 min. The light transmittance at 550 nm and tensile strength of the film are 88.5% and 44.5 MPa, respectively. To enhance the tensile strength of PLA film, it was required to keep the film more than 2 min at $120^{\circ}C$ during the annealing step after a biaxially orientation.