• Title/Summary/Keyword: $G_1$- to S-phase transition

Search Result 67, Processing Time 0.027 seconds

ANALYSIS ON STEAM CONDENSING FLOW USING NON-EQUILIBRIUM WET-STEAM MODEL (비평형 습증기 모델을 적용한 증기 응축 유동 해석)

  • Kim, C.H.;Park, J.H.;Ko, D.G.;Kim, D.I.;Kim, Y.S.;Baek, J.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • When the steam is used as working fluid in fluid machinery, different from other gases as air, phase transition (steam condensation) can occur and it affects not only the flow fields, but also machine performance & efficiency. Therefore, considering phase transition phenomena in CFD calculation is required to achieve accurate prediction of steam flow and non-equilibrium wet-steam model is needed to simulate realistic steam condensing flow. In this research, non-equilibrium wet-steam model is implemented on in-house code(T-Flow), the flow fields including phase transition phenomena in convergent-divergent nozzle are studied and compared to results of advance researches.

Oct4 resetting by Aurkb–PP1 cell cycle axis determines the identity of mouse embryonic stem cells

  • Shin, Jihoon;Youn, Hong-Duk
    • BMB Reports
    • /
    • v.49 no.10
    • /
    • pp.527-528
    • /
    • 2016
  • In embryonic stem cells (ESCs), cell cycle regulation is deeply connected to pluripotency. Especially, core transcription factors (CTFs) which are essential to maintaining the pluripotency transcription programs should be reset during M/G1 transition. However, it remains unknown about how CTFs are governed during cell cycle progression. Here, we describe that the regulation of Oct4 by Aurora kinase b (Aurkb)/protein phosphatase 1 (PP1) axis during the cell cycle is important for resetting Oct4 to pluripotency and cell cycle related target genes in determining the identity of ESCs. Aurkb starts to phosphorylate Oct4(S229) at the onset of G2/M phase, inducing the dissociation of Oct4 from chromatin, whereas PP1 binds Oct4 and dephosphorylates Oct4(S229) during M/G1 transition, which resets Oct4-driven transcription for pluripotency and the cell cycle. Furthermore, Aurkb phosphormimetic and PP1 binding-deficient mutations in Oct4 disrupt the pluripotent cell cycle, lead to the loss of pluripotency in ESCs, and decrease the efficiency of somatic cell reprogramming. Based on our findings, we suggest that the cell cycle is directly linked to pluripotency programs in ESCs.

Magnetic Properties of Multilayered and Mixed $Pr_{0.65}$Ca_{0.35}MnO_3/La_{0.7}Sr_{0.3}MnO_3$ Films

  • V. G. Prokhorov;Lee, Y. P.;V. S. Flis;Park, J. S.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.67-69
    • /
    • 2003
  • The magnetic properties of single- and poly-crystalline $La_{0.7}Sr_{0.3}MnO_3/Pr_{0.65}Ca_{0.35}MnO_3$ multilayered (ML) films, and composite (CP) $(La_{0.7}Sr_{0.3})_{0.5}(Pr_{0.65}Ca_{0.35}_{0.5}MnO_3$ films, prepared by laser ablation, have been investigated in a wide temperature range. It was shown that the transformation from an incoherent to a coherent interface in the ML films leads to an enhancement of the ferromagnetic coupling between layers and to a single-phase magnetic transition. The amorphous CP films demonstrate a paramagnetic behavior of the magnetization with a sharp peak at $T_{G}\approx$45 K, which was interpreted as the formation of Griffiths phase. A short-term annealing at $750^{\circ}C$ induced the complete crystallization of film, and a recovery of the ferromagnetic and the metal-insulator transitions.

Atmospheric Concentrations and Temperature- Dependent Air-Surface Exchange of Organochlorine Pesticides in Seoul (도시 대기 중 유기염소계 살충제의 농도수준 및 배출 특성)

  • 최민규;여현구;천만영;선우영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.4
    • /
    • pp.275-284
    • /
    • 2002
  • Atmospheric concentrations of organochlorine pesticides (OCPs) in Seoul, South Korea between July 1999 and May 2000 were determined to investigate concentration distribution in air, relationship between concentrations and meteorological conditions, and apportionment of sources e.g. local sources (air- surface exchange) and long range transport. Endosulfan and $\alpha$-HCH were the highest concentrations in atmosphere with values typcally ranging from 10s to l00s of pg/㎥. These high concentrations may be attributed to their usage, period and chemical property (Koa). All OCPs also showed elevated levels during the summer and were positively correlated with temperature. This would suggest that a seasonal enhancement was due to (re)volatilization from secondary sources and application during the warmer months. The temperature dependence of atmospheric concentrations of OCPs were investigated using plots of the natural logarithm of partial pressure (In P) vs reciprocal mean temperatures (1/T), and environmental phase-transition energies were calculated for each of the pesticides. For OCPs, temperature dependence was statistically significant (at the 99.99% confidence level) and temperature accounted for 35~95% of the variability in concentrations. The relatively higher slopes and phase-transition energies for $\alpha$-, ${\gamma}$-chlordane, endosulfan and endosulfan sulfate suggested that volatilization from local sources influenced their concentrations. The relatively lower those for $\alpha$-, ${\gamma}$-HCH, p, p'-DDE and heptachlor epoxide also suggested that volatilization from local sources and long range transport influenced their concentrations.

Probing the Conditions for the Atomic-to-Molecular Transition in the Interstellar Medium

  • Park, Gyueun;Lee, Min-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.50.2-51
    • /
    • 2021
  • Stars form exclusively in cold and dense molecular clouds. To fully understand star formation processes, it is hence a key to investigate how molecular clouds form out of the surrounding diffuse atomic gas. With an aim of shedding light in the process of the atomic-to-molecular transition in the interstellar medium, we analyze Arecibo HI emission and absorption spectral pairs along with TRAO/PMO 12CO(1-0) emission spectra toward 58 lines of sight probing in and around molecular clouds in the solar neighborhood, i.e., Perseus, Taurus, and California. 12CO(1-0) is detected from 19 out of 58 lines of sight, and we report the physical properties of HI (e.g., central velocity, spin temperature, and column density) in the vicinity of CO. Our preliminary results show that the velocity difference between the cold HI (Cold Neutral Medium or CNM) and CO (median ~ 0.7 km/s) is on average more than a factor of two smaller than the velocity difference between the warm HI (Warm Neutral Medium or WNM) and CO (median ~ 1.7 km/s). In addition, we find that the CNM tends to become colder (median spin temperature ~ 43 K) and abundant (median CNM fraction ~ 0.55) as it gets closer to CO. These results hints at the evolution of the CNM in the vicinity of CO, implying a close association between the CNM and molecular gas. Finally, in order to examine the role of HI in the formation of molecular gas, we compare the observed CNM properties to the theoretical model by Bialy & Sternberg (2016), where the HI column density for the HI-to-H2 transition point is predicted as a function of density, metallicity, and UV radiation field. Our comparison shows that while the model reproduces the observations reasonably well on average, the observed CNM components with high column densities are much denser than the model prediction. Several sources of this discrepancy, e.g., missing physical and chemical ingredients in the model such as the multi-phase ISM, non-equilibrium chemistry, and turbulence, will be discussed.

  • PDF

Development of an in Vitro Assay for the Proteolytic Processing of the CDP/Cux Transcription Factor

  • Hebert, Sherry;Berube, Ginette;Nepveu, Alain
    • BMB Reports
    • /
    • v.36 no.4
    • /
    • pp.390-398
    • /
    • 2003
  • The CDP/Cux transcription factor was previously shown to be proteolytically processed at the G1/S transition. In view of characterizing and eventually identifying the protease responsible for CDP/Cux processing, we have established an in vitro proteolytic processing assay. CDP/Cux recombinant proteins expressed in mammalian or bacterial cells were efficiently processed in vitro using as a source of protease either whole cell extracts, the nuclear or the cytoplasmic fraction. Processing was found to take place optimally at a lower pH, to be insensitive to variations in salt concentration, and to be inhibited by the protease inhibitors MG132 and E64D. Interestingly, the bacterially-produced substrate was more efficiently processed than the substrate purified from mammalian cells. Moreover, processing in vitro was more efficient when CDP/Cux substrates were purified from populations of cells enriched in the S phase than in the G1 phase of the cell cycle. Altogether, these results suggest that post-translational modifications of CDP/Cux in mammalian cells inhibits processing and contributes to the cell cycle-dependent regulation of processing. The in vitro processing assay described in this study will provide a useful tool for the purification and identification of the protease responsible for the processing of CDP/Cux.

Characterizations of Photo-Oxidative Abilities of Nanostructured TiO2 Powders Prepared with Additions of Various Metal-Chlorides during Homogeneous Precipitation (균일침전시 여러 가지 금속염화물들을 첨가하여 제조된 TiO2 나노 분말들의 광산화 능력 평가)

  • Hwang D. S;Lee N. H;Lee H. G;Kim S. J
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.293-299
    • /
    • 2004
  • Transition metal ions doped $TiO_2$ nanostructured powders were prepared with simply heating aqueous $TiOCl_2$ solutions, contained various metal ions (Ni, Al, Fe, Zr, and Nb) of 1.47 mol% added as metal-chlorides, at $100^{\circ}C$ for 4 hrs by homogeneous precipitation process under suppressing conditions of water vaporization. The characterizations for prepared $TiO_2$ powders were carried out to observe doping of metal ions, their concentrations and microstructures using XRD, UV-VIS (DRS), XPS, SEM, TEM and ICP. Also, photo-oxidative abilities were evaluated by decomposition of 4-chlorophenol (4CP) under ultraviolet light irradiations. No secondary oxide phases were formed in all the $VTiO_2$ powders, showing doping with various transition metal ions. When adding ions ($Ni^{2+}$ or$ Al^{3+ }$ and $Zr^{4+}$ ) having valance states or ionic radii greatly different from those of $Ti^{4+}$ , the $TiO_2$ powders of mixed anatase and rutile phases were formed, whereas in the case of additions of $^Fe{3+ }$ and $Nb^{ 5+}$ as well as no addition of metal ion the powders with pure rutile phase alone were formed. Among the prepared $TiO_2$ powders, Ni$^{2+}$ doped $TiO_2$ powders, containing a small amount of anatase phase, showed excellent photo-oxidative ability in 4CP decomposition because of relative decreases in electron-hole recombination and poisoning of $TiO_2$ surface during the photoreaction.n.

Expression of HBP2 in Human Spermatogonial Stem Cell-like Cells from Nonobstructive Azoospermia Patients and Its Role in G1/S Transition & Downregulation in Colon Cancer

  • Yoo, Jung-Ki;Lee, Dong-Ryul;Lim, Jung-Jin;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • v.32 no.4
    • /
    • pp.211-215
    • /
    • 2008
  • The HMG box containing protein (HBP) has a high mobility group domain and involved in the regulation of proliferation and differentiation of tissues. We screened HBP2 in glioblastoma using Suppression Subtractive Hybridization (SSH) and isolated human spermatogonial stem cell-like cells (hSSC-like cells) derived from patients of nonobstructive azoospermia (NOA). Expression of HBP2 was analyzed by RT-PCR in undifferentiated stem cells (human Embryonic Stem Cells, hSSC-like cells 2P) and spontaneous differentiated stem cells (hSSC-like cells 4P). It was overexpressed in hESC and hSSC-like cells 2P but not in hSSC-like cells 4P. Also, the expression level of HBP2 was downregulated in colon tumor tissues compared to normal tissues. Specifically in synchronized WI-38 cells, HBP2 was highly upregulated until the G1 phase of the cell cycle and gradually decreased during the S phase. Our results suggest that HBP2 was downregulated during the spontaneous differentiation of hSSC-like cells. HBP2 was differently expressed in colon tissues and was related to G1-progression in WI-38 cells. It may playa role in the maintenance of an undifferentiated hSSC-like cell state and transits from G1 to S in WI-38 cells. This research was important that it identified a biomarker for an undifferentiated state of hSSC-like cells and characterized its involvement to arrest during cell cycle in colon cancer.

Requirement of Bni5 Phosphorylation for Bud Morphogenesis in Saccharomyces cerevisiae

  • Nam, Sung-Chang;Sung, Hye-Ran;Chung, Yeon-Bok;Lee, Chong-Kil;Lee, Dong-Hun;Song, Suk-Gil
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.34-40
    • /
    • 2007
  • In budding yeast, G2/M transition is tightly correlated with bud morphogenesis regulated by Swel and septin that plays as a scaffold to recruits protein components. BNI5 isolated as a suppressor for septin defect is implicated in septin organization and cytokinesis. The mechanism by which Bni5 regulates normal septin function is not completely understood. Here, we show that Bni5 phosphorylation is required for mitotic entry regulated by Swel pathway. Bni5 modification was evident from late mitosis to G1 phase, and CIP treatment in vitro of affinity-purified Bni5 removed the modification, indicative of phosphorylation on Bni5. The phosphorylation-deficient mutant of BNI5 (bni5-4A) was defective in both growth at semi-restrictive temperature and suppression of septin defect. Loss of Bni5 phosphorylation resulted in abnormal bud morphology and cell cycle delay at G2 phase, as evidenced by the formation of elongated cells with multinuclei. However, deletion of Swel completely eliminated the elongated-bud phenotypes of both bni5 deletion and bni5-4A mutants. These results suggest that the bud morphogenesis and mitotic entry are positively regulated by phosphorylation-dependent function of Bni5 which is under the control of Swel morphogenesis pathway.

Down-regulation of the cyclin E1 oncogene expression by microRNA-16-1 induces cell cycle arrest in human cancer cells

  • Wang, Fu;Fu, Xiang-Dong;Zhou, Yu;Zhang, Yi
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.725-730
    • /
    • 2009
  • Cyclin E1 (CCNE1), a positive regulator of the cell cycle, controls the transition of cells from G1 to S phase. In numerous human tumors, however, CCNE1 expression is frequently dysregulated, while the mechanism leading to its dysregulation remains incompletely defined. Herein, we showed that CCNE1 expression was subject to post-transcriptional regulation by a microRNA miR-16-1. This was evident at protein level of CCNE1 as well as its mRNA level. Further evident by dual luciferase reporter assay revealed that two evolutionary conserved binding sites on 3' UTR of CCNE1 were the direct functional target sites. Moreover, we showed that miR-16-1 induced G0/G1 cell cycle arrest by targeting CCNE1 and siRNA against CCNE1 partially phenocopied miR-16-1-induced cell cycle phenotype whereas substantially rescued anti-miR-16-1- induced phenotype. Together, all these results demonstrate that miR-16-1 plays a vital role in modulating cellular process in human cancers and indicate the therapeutic potential of miR-16-1 in cancer therapy.