• 제목/요약/키워드: $G^E$ models

검색결과 666건 처리시간 0.029초

다공탄성체 척추운동분절 유한요소 모델을 이용한 추간판의 퇴화과정 분석 (Analysis of Disc Degeneration in a Poroelastic Spinal Motion Segment FE Model)

  • 우대곤;김영은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.248-251
    • /
    • 2005
  • To investigate the degeneration process in the intervertebral disc, a three dimensional (3D) poroelastic finite-element (FE) model was developed. Disc was modeled as two different regions, such as annulus modeled with fiber reinforced 20 node poroelastic ground matrix and nucleus having large porosity. Excess Von Mises stress in the disc element assumed to be a possible source of degeneration under compressive loading condition. Recursive calculation was continued until the desired convergence was attained by changing the permeability and porosity of those elements, which could be predicted from the previous iteration. The degenerated disc model showed that relatively small compressive stresses were generated in the nucleus elements compared to normal disc. Its distribution along the sagittal plane was matched well with a previously reported experimental result. Contrasts to this result, pore pressures in the nucleus were higher than those in the normal disc. Total stress indicated similar values for two different models. This new approach using poroelastic modeling could provide the explanation of the interaction between fluid and solid matrix in the disc during the degeneration process.

  • PDF

Computational analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV genome using MEGA

  • Sohpal, Vipan Kumar
    • Genomics & Informatics
    • /
    • 제18권3호
    • /
    • pp.30.1-30.7
    • /
    • 2020
  • The novel coronavirus pandemic that has originated from China and spread throughout the world in three months. Genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) predecessor, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) play an important role in understanding the concept of genetic variation. In this paper, the genomic data accessed from National Center for Biotechnology Information (NCBI) through Molecular Evolutionary Genetic Analysis (MEGA) for statistical analysis. Firstly, the Bayesian information criterion (BIC) and Akaike information criterion (AICc) are used to evaluate the best substitution pattern. Secondly, the maximum likelihood method used to estimate of transition/transversions (R) through Kimura-2, Tamura-3, Hasegawa-Kishino-Yano, and Tamura-Nei nucleotide substitutions model. Thirdly and finally nucleotide frequencies computed based on genomic data of NCBI. The results indicate that general times reversible model has the lowest BIC and AICc score 347,394 and 347,287, respectively. The transition/transversions bias for nucleotide substitutions models varies from 0.56 to 0.59 in MEGA output. The average nitrogenous bases frequency of U, C, A, and G are 31.74, 19.48, 28.04, and 20.74, respectively in percentages. Overall the genomic data analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV highlights the close genetic relationship.

클러터 환경에서의 GLRT 기반 표적 탐지성능 (Target Detection Performance in a Clutter Environment Based on the Generalized Likelihood Ratio Test)

  • 서진배;전주환;정지현;김진욱
    • 한국전자파학회논문지
    • /
    • 제30권5호
    • /
    • pp.365-372
    • /
    • 2019
  • 본 논문에서는 일반화우도비검정(generalized likelihood ratio test: GLRT)에 있는 모르는 파라미터(표적의 크기, 클러터의 파라미터)를 최대우도추정(maximum likelihood estimation: MLE) 방법 또는 Newton-Raphson method를 통해 추정하는 방법에 대해서 제안하였다. 클러터 환경에서 표적을 탐지할 경우, 실제 환경과 유사하게 클러터의 수식적인 모델을 세우는 것이 중요하다. 이러한 서로 상관된 클러터 모델은 SIRV(Spherically Invariant Random Vector)를 이용하여 생성할 수 있다. 생성된 클러터 모델에 대한 일반화우도비검정 식을 세우고, 추정된 파라미터에 대한 일반화우도비검정의 탐지확률을 모의실험을 통해 확인하였다.

Long-term stability of maxillary and mandibular arch dimensions when using rapid palatal expansion and edgewise mechanotherapy in growing patients

  • Kim, Ki Beom;Doyle, Renee E.;Araujo, Eustaquio A.;Behrents, Rolf G.;Oliver, Donald R.;Thiesen, Guilherme
    • 대한치과교정학회지
    • /
    • 제49권2호
    • /
    • pp.89-96
    • /
    • 2019
  • Objective: The purpose of this study was to assess the long-term stability of rapid palatal expansion (RPE) followed by full fixed edgewise appliances. Methods: This study included 67 patients treated using Haas-type RPE and non-extraction edgewise appliance therapy at a single orthodontic practice. Serial dental casts were obtained at three different time points: pretreatment ($T_1$), after expansion and fixed appliance therapy ($T_2$), and at long-term recall ($T_3$). The mean duration of the $T_1-T_2$ and $T_2-T_3$ periods was $4.8{\pm}3.5years$ and $11.0{\pm}5.4years$, respectively. The dental casts were digitized, and the computed measurements were compared with untreated reference data. Results: The majority of treatment-related increases in the maxillary and mandibular arch measurements were statistically significant (p < 0.05) and greater than expected for the untreated controls. Although many measurements decreased postretention ($T_2-T_3$), the net gains persisted for all of the measurements evaluated. Conclusions: The use of RPE therapy followed by full fixed edgewise appliances is an effective method for increasing maxillary and mandibular arch width dimensions in growing patients.

Community Development and Economic Welfare through the Village Fund Policy

  • UDJIANTO, Djoko;HAKIM, Abdul;DOMAI, Tjahjanulin;SURYADI, Suryadi;HAYAT, H.
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권1호
    • /
    • pp.563-572
    • /
    • 2021
  • This study aims to investigate the implementation of village fund (VF) policy in Indonesia by addressing the following issues: (1) what is the VF policy; (2) factors that support and hinder policy implementation; (3) impact of policy implementation; and (4) model for implementing village fund policies that can improve community welfare. Through a descriptive qualitative-based approach, several indicators are measured, namely, the substance of implementing rules, the results of project implementation, supporting and inhibiting factors for policies, participation factors, and the impact generated by village fund policies, which include social and economic effects. The extraction of this information and indicators will lead this study to produce ideal models and propositions for quantitative confirmatory research as a future research agenda. This study was conducted in two villages (Mojomulyo and Tambakromo) in Pati District, Central Java, Indonesia. Data collection model using interviews and observations from all actors who play a role (e.g., village government, village supervisory agency, and community). The study results show that policies have been implemented by normative rules; there are several supporting and inhibiting factors both internal and external. The study results also confirm the relevance of the articulated theory and some comprehensive input to our study.

Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression

  • Wang, Jian-Tao;Wang, Fa-Cheng
    • Steel and Composite Structures
    • /
    • 제38권6호
    • /
    • pp.617-635
    • /
    • 2021
  • This paper numerically investigated the behavior of built-up square concrete-filled steel tubular (CFST) columns under combined preload and axial compression. The finite element (FE) models of target columns were verified in terms of failure mode, axial load-deformation curve and ultimate strength. A full-range analysis on the axial load-deformation response as well as the interaction behavior was conducted to reveal the composite mechanism. The parametric study was performed to investigate the influences of material strengths and geometric sizes. Subsequently, influence of construction preload on the full-range behavior and confinement effect was investigated. Numerical results indicate that the axial load-deformation curve can be divided into four working stages where the contact pressure of curling rib arc gradually disappears as the steel tube buckles; increasing width-to-thickness (B/t) ratio can enhance the strength enhancement index (e.g., an increment of 1.88% from B/t=40 to B/t=100), though ultimate strength and ductility are decreased; stiffener length and lip inclination angle display a slight influence on strength enhancement index and ductility; construction preload can degrade the plastic deformation capacity and postpone the origin appearance of contact pressure, thus making a decrease of 14.81%~27.23% in ductility. Finally, a revised equation for determining strain εscy corresponding to ultimate strength was proposed to evaluate the plastic deformation capacity of built-up square CFST columns.

Analysis methodology of local damage to dry storage facility structure subjected to aircraft engine crash

  • Almomani, Belal;Kim, Tae-Yong;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1394-1405
    • /
    • 2022
  • The importance of ensuring the inherent safety and security has been more emphasized in recent years to demonstrate the integrity of nuclear facilities under external human-induced events (e.g. aircraft crashes). This work suggests a simulation methodology to effectively evaluate the impact of a commercial aircraft engine onto a dry storage facility. A full-scale engine model was developed and verified by Riera force-time history analysis. A reinforced concrete (RC) structure of a dry storage facility was also developed and material behavior of concrete was incorporated using three constitutive models namely: Continuous Surface Cap, Winfrith, and Karagozian & Case for comparison. Strain-based erosion limits for concrete were suitably defined and the local responses were then compared and analyzed with empirical formulas according to variations in impact velocity. The proposed methodology reasonably predicted such local damage modes of RC structure from the engine missile, and the analysis results agreed well with the calculations of empirical formulas. This research is expected to be helpful in reviewing the dry storage facility design and in the probabilistic risk assessment considering diverse impact scenarios.

Drug adsorption and anti-microbial activity of functionalized multiwalled carbon nanotubes

  • Saxena, Megha;Mittal, Disha;Boudh, Richa;Kumar, Kapinder;Verma, Anita K.;Saxena, Reena
    • Advances in nano research
    • /
    • 제11권6호
    • /
    • pp.667-678
    • /
    • 2021
  • Multiwalled carbon nanotubes (MWCNTs) were first oxidized (O-CNTs) to introduce carboxylic group and then further functionalized (F-CNTs) with m-phenylenediamine, which was confirmed by FTIR and SEM. It was used as an effective adsorbent for the adsorptive removal of diclofenac drug from water. Under optimum conditions of pH 6, stirring speed 600 rpm, the maximum adsorption capacity obtained was 532 mg g-1 which is superior to the values reported in literature. The adsorption was quite rapid as 25 mg L-1 drug solution was adsorbed in only 3 minutes of contact time with 10 mg of adsorbent dose. The adsorption kinetics and isotherms were studied using various models to evaluate the adsorption process. The results showed that the data best fit in kinetics pseudo-second order and Langmuir isotherm model. Furthermore, the oxidized and functionalized MWCNTs were applied on gram-negative Escherichia coli and gram-positive Staphylococcus aureus using agar disc diffusion assay to validate their anti-microbial activity. Results were unique as both oxidized and functionalized MWCNTs were equally active against both E. coli and S. aureus. The newly synthesized F-CNTs have great potential in water treatment, with their dual action of removing drug and pathogens from water, makes it potential applicant to save environment.

Cavitation optimization of single-orifice plate using CFD method and neighborhood cultivation genetic algorithm

  • Zhang, Yu;Lai, Jiang;He, Chao;Yang, Shihao
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1835-1844
    • /
    • 2022
  • Single-orifice plate is wildly utilized in the piping system of the nuclear power plant to throttle and depressurize the fluid of the pipeline. The cavitation induced by the single-orifice plate may cause some serious vibration of the pipeline. This study aims to find the optimal designs of the single-orifice plates that may have weak cavitation possibilities. For this purpose, a new single-orifice plate with a convergent-flat-divergent hole was modeled, a multi-objective optimization method was proposed to optimize the shape of a single-orifice plate, while computational fluid dynamics method was adopted to obtain the fluid physical quantities. The reciprocal cavitation number and the developmental integral were treated as cavitation indexes (e.g., objectives for the optimization algorithm). Two non-dominant designs ultimately achieved illustrated obvious reduction in the cavitation indexes at a Reynolds number Re = 1 ×105 defined based on fluid velocity. Besides, the sensitivity analysis and temperature effects were also performed. The results indicated that the convergent angle of the single-orifice plate dominants the cavitation behavior globally. The optimal designs of single-orifice plates result in lower downstream jet areas and lower upstream pressure. For a constant Reynolds number, the higher temperature of liquid water, the easier it is to undergo cavitation. Whereas there is a diametric phenomenon for a constant fluid velocity. Moreover, the regression models were carried out to establish the mathematical relation between temperature and cavitation indexes.

Predicting and analysis of interfacial stress distribution in RC beams strengthened with composite sheet using artificial neural network

  • Bensattalah Aissa;Benferhat Rabia;Hassaine Daouadji Tahar
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.517-527
    • /
    • 2023
  • The severe deterioration of structures has led to extensive research on the development of structural repair techniques using composite materials. Consequently, previous researchers have devised various analytical methods to predict the interface performance of bonded repairs. However, these analytical solutions are highly complex mathematically and necessitate numerous calculations with a large number of iterations to obtain the output parameters. In this paper, an artificial neural network prediction models is used to calculate the interfacial stress distribution in RC beams strengthened with FRP sheet. The R2value for the training data is evaluated as 0.99, and for the testing data, it is 0.92. Closed-form solutions are derived for RC beams strengthened with composite sheets simply supported at both ends and verified through direct comparisons with existing results. A comparative study of peak interfacial shear and normal stresses with the literature gives the usefulness and effectiveness of ANN proposed. A parametrical study is carried out to show the effects of some design variables, e.g., thickness of adhesive layer and FRP sheet.