• Title/Summary/Keyword: $Fe_3O_4$ concentration

Search Result 370, Processing Time 0.034 seconds

Immobilization and Recycling of Arsenic-Contaminated Fine Soil Cake Produced after Soil Washing Process (토양세척 후 발생하는 비소오염 탈수미세토의 불용화 및 재활용 평가)

  • Oh, Minah;Moon, SoYoung;Hyun, Min;Chae, HeeHoon;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.4
    • /
    • pp.9-16
    • /
    • 2012
  • Standardized remediation process for the soil contaminated with arsenic is insufficient due to characteristics of its anion-mobility and speciation changed by Eh-pH of soil. One of the well-known efficient remediation processes is the modified soil washing that particle separation process by only water. However, it is required that the treatment plan for the fine soil what was discharged after modified soil washing. Therefore, this research suggests the treatment plan that the recycling method using arsenic immobilization by FeS-$H_2O_2$. The batch experiments results for the arsenic immobilization showed that the water content was at least 50%, the injection of FeS and $H_2O_2$ (assay-35%) were 8% (w/watdrybase) and 0.2 mL/10 g of fine soil respectively. Arsenic concentration with KSLT was decreased about 95.4%. The results indicated that the mixing of FeS-$H_2O_2$ was highly efficient on the immobilization of As-contaminated soil. The mixing ratio as 13% of bentonite with 3% of cement (at based on 100% of immobilized fine soil) was satisfied with standard of liner for landfill construction.

Stripping of Ferric Chloride by Mineral Acid Solution from the Loaded Alamine336 Phase (Alamine336에 추출(抽出)된 염화(鹽化) 제 2철(鐵)의 무기산용액(無機酸溶液)에 의한 탈거(奪去))

  • Lee, Man-Seung;Chae, Jong-Gwee
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.37-43
    • /
    • 2008
  • Stripping experiments of iron from the loaded Alamine336 by sulfurous, chloric and sulfuric acid solutions have been performed by varying the concentration of acid and stripping conditions. The stripping percentage of iron decreased with the increase of HCl and $H_{2}SO_4$ concentration, while that increased with the increase of $H_{2}SO_3$ concentration up to 3 M. Stripping temperature had adverse effect on the stripping percentage of iron in the stripping by $H_{2}SO_3$ solution, while the stripping percentage of iron by HCl solution increased with the increase of temperature. Stripping isotherm of iron by 0.1 M HCl and 0.1 M $H_{2}SO_4$ solution indicated that three and four stripping stages could result in a solution containing 0.05 M iron at an O/A ratio of 1/10 from the loaded Alamine336 phase where iron concentration was 0.5 M.

A study for corrosion products of Ancient iron objects (고대 철기유물의 부식 생성물에 관한 연구)

  • Kand, Dai-Ill;Takayasu. A.Koezuka;Tosiya Matsui
    • 보존과학연구
    • /
    • s.16
    • /
    • pp.59-111
    • /
    • 1995
  • Chemical composion and crystal form of Corrosion products found on archaeological iron objects were analyzed using X-ray fluorescence analysis, micro-X-ray powder diffraction analysis and ion chromatographic technique. The nature and behavior of the corrosion products were studied in order to aid in the conservation and restoration of burial iron objects. Twenty-two samples analyzed in this study were collected from iron object found in Korea and Japan. The corrosion products of iron objects from burial mounds contain $\alpha$-FeOOH, $\beta$-FeOOH, $\gamma$-FeOOH, $Fe_3O_4$and amorphous iron hydroxides. The content of $\alpha$-HeOOH is the greatest. Because, Ageing for long period should change the amorphous iron hydroxides is considerably less than that in usual atmospheric corrosion products. The concentration of chlorine and sulfine is remarkably variable ($Cl^-$ : 100- 30,000ppm, $SO_4^-2$ : 20-10,000ppm),but the reasons are unclear. The presence of generally high concentrations of chlorine and sulfine the corrosion products of iron objects seem to be influenced by the marine climatic condition. The presence of high chlorine and sulfine concentrations in the corrosion products of iron objects seem to be influenced by the marine burial environments.

  • PDF

Photoluminescence properties of Mn4+-activated Li2ZnSn2O6 red phosphors

  • Choi, Byoung Su;Lee, Dong Hwa;Ryu, Jeong Ho;Cho, Hyun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.80-83
    • /
    • 2019
  • The Mn4+-activated Li2ZnSn2O6 (LZSO:Mn4+) red phosphors were synthesized by the solid-state reaction at temperatures of 1100-1400 ℃ in air. The synthesized LZSO:Mn4+ phosphors were confirmed to have a single hexagonal LZSO phase without the presence of any secondary phase formed by the Mn4+ addition. With near UV and blue excitation, the LZSO:Mn4+ phosphors exhibited a double band deep-red emission peaked at ~658 nm and ~673 nm due to the 2E → 4A2 transition of Mn4+ ion. PL emission intensity showed a strong dependence on the Mn4+ doping concentration and the 0.3 mol% Mn4+-doped LZSO phosphor produced the strongest PL emission intensity. Photoluminescence emission intensity was also found to be dependent on the calcination temperature and the optimal calcination temperature for the LZSO:Mn4+ phosphors was determined to be 1200 ℃. Dynamic light scattering (DLS) and field-effect scanning electron microscopy (FE-SEM) analysis revealed that the 0.3 mol% Mn4+-doped LZSO phosphor particles have an irregularly round shape and an average particle size of ~1.46 ㎛.

Loess Dyeing of Soybean Fabrics (대두직물의 황토염색)

  • Lee, Sol;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.17 no.6
    • /
    • pp.1004-1012
    • /
    • 2015
  • The purpose of this study is to investigate the loess dyeability of soybean fabric using loess as colorants. Recent days, various textile products such as inner wears, sheets and interior goods are manufactured using materials dyed with loess emphasizing its improved metabolism, anti-bacterial, deodorizing properties, and far infrared ray emissions. Soybean fabric was dyed with loess solution according to concentration of loess, dyeing temperature and dyeing time. To improve washing fastness, soybean fabric and dyed soybean fabric with loess were mordanted by mordanting agents such as sodium chloride(NaCl), Acetic acid(CH3COOH) and Aluminium Potassium Sulfate(AlK(SO4)2·12H2O). Dyeability and color characteristics of dyed soybean fabric were obtained by CCM observation. Particle size distribution of loess, the dyeability(K/S) of soybean fabric, morphology and washing durability of loess dyed soybean fabric were investigated. The results obtained were as follows; Mean average diameter of loess was 1.08µm. The main components of loess used in this study were silicon dioxide(SiO2), aluminium oxide(Al2O3), and iron oxide(Fe2O3). The content of these three component was above 75 weight %. The dyeability of soybean fabric was increased gradually with increasing concentration of loess. The optimum dyeing temperature and dyeing time were 90℃ and 60minutes expectively. The fastness to washing according to concentration of loess and mordanting method indicated good grade result as more than 4 degree in all conditions.

Magnetic Properties of Spin Valve Ta Underlayer Depending on N2 Concentration and Annealing Temperature (스핀 밸브 Ta 하지층의 질소함유량 변화와 열처리 온도에 따른 자기적 특성)

  • Choi, Yeon-Bong;Kim, Ji-Won;Jo, Soon-Chul;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.226-230
    • /
    • 2005
  • In this research, magnetic properties and annealing effects of the spin valve structures were investigated, which have Ta underlayer deposited with Ar and $N_2$ gas mixture. Also, TaN underlayer as a diffusion barrier and the substrate were investigated. The structure of the spin valve was Si($SiO_2$)/Ta(TaN)/NiFe/CoFe/Cu/CoFe/FeMn/Ta. Deposition rate was decreased and resistivity and roughness of the TaN films were increased as the $N_2$ gas flow was increased. The XRD results after high temperature annealing showed that Silicides were created in Si/Ta layer, but not in Si/TaN layer. Magnetoresistance ratio (MR) and exchange coupling field ($H_{ex}$) were decreased when the $N_2$ gas flow was increased over 4.0 sccm. The MR of the spin valves with Ta and TaN films deposited with up to 4.0 sccm of $N_2$ gas flow was increased about $0.5\%$ until the annealing temperature of up to $200^{\circ}C$ and then, decreased. TaN film deposited with 8.0 sccm of $N_2$ gas flow showed twice the adhesion of the Ta film. The above results indicate that with 3.0 sccm of $N_2$ gas flow during the Ta underlayer deposition, the magnetic properties of the spin valves are maintained, while the underlayer may be used as a diffusion barrier and the adhesion between the Si substrate and the underlayer is increased.

A Study on the Borided Stsucture of Cast Iron (주철(鑄鐵)의 침붕조직(浸硼組織)에 관(關)한 연구(硏究))

  • Kim, H.S.;Ra, H.Y.
    • Journal of Korea Foundry Society
    • /
    • v.2 no.3
    • /
    • pp.2-15
    • /
    • 1982
  • In this study, the influenced of graphite shape on the boriding of cast iron and boride structure was investigated. Gray cast iron, ferritic and pearlitic ductile cast iron were borided at 750,850,900 and $950^{\circ}C$ for 1,3 and 5 hours by powder pack method with the mixture of $B_4C_9\;Na_2B_4O_7$, $KBF_4$ and Shc. The boride layer was consisted of FeB(little), $Fe_2B$ (main) and graphite. Some possibility of the existence of unknown Fe-B-C compound in the boride layer was suggested. And precipitates in the diffusion zone was $Fe_3(B,C)$. The concentration of Si and precipitation of $Fe_3(B,C)$ in the ${\alpha}$ layer raised the hardness of this Zone. The depth and hardness of boride layer increased with the increase of treating temperature and tim. But high temperature (over $950^{\circ}C)$ caused pore at graphite position and long treating time (5hrs) sometimes caused formation of graphite layer beneath the boride layer. So, for the practical application of borided cast iron, treating in short time and at low temperature was recommended. And for ductile cast iron, ferritizing or pearlitizing heat treatment was seemmed to be possible at the same time with boriding. The graphite in the boride layer was deeply concerned with the qualitx and characteristics of the boride layer. And it greatly influenced on the shape of the boride phase, structure of the boride layer. Generally speaking, the existance of graphite restrained the growth of the boride phase. But the boundary between the gsaphite and the matrix acted as the shortcut of boron diffusion. So, for gray cast iron, the graphite layed length-wise led the formation of boride layer.

  • PDF

Separation and Identification of a Growth Inhibiting Compound from Aralia continentalis (독활(Aralia continentalis)로부터 생장억제물질(生長抑制物質)의 분리(分離) 및 동정(同定))

  • Kim, K.U.;Back, K.W.
    • Korean Journal of Weed Science
    • /
    • v.10 no.3
    • /
    • pp.221-226
    • /
    • 1990
  • This experiment was performed to identify and isolate a growth inhibiting compound from Aralia continentalis. In order to isolate the growth inhibiting compound from Aralia continentalis the bioassay test of lettuce seed germination and rice seedling growth were used. Through these bioassays the growth inhibiting compound which was spotted at $R_f$ 0.51 on Tlc was isolated. This compound inhibited the lettuce growth by 79% at the concentration of 1000ppm. When sprayed with $FeCl_3$ reagent, it developed a bule spot. It had UV-absorbance at 217 nm and 342 nm, and $OH^-$ of $3600cm^{-1}$, C=O of $1700cm^{-1}$, C=C of $1600cm^{-1}$, and C-O of $1200cm^{-1}$ on IR spectrum. Through HPLC analysis this compound was identified as a ferulic acid ($C_{10}H_{10}O_4$) having 25 min. retention time.

  • PDF

The study of Ag etching effect by adding compound on the lead frame process (Lead frame 공정 중 화합물에 따른 Ag 에칭효과)

  • 이경수;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.859-862
    • /
    • 2001
  • This study describes a selective Ag etching solution for use with pattern on the surface of copper. This etching solution uses potassium iodide and potassium sulfate as the ligand that coordinates to the metal ions and ferricyanide as the oxidant. The etching rate was depended on the concentration of co-ligands and time. But the etching rate wasn't depended on the pH(2∼6), and oxidant(K$_3$Fe(CN)$\_$6/). Complete etching of silver can be achieved rapidly within 90sec for 4.46${\mu}$m thick metal films when aqueous solutions containing K$_3$Fe(CN)$\_$6/, K$_2$S$_2$O$\_$8/ and KI was used. This etching solution was characteristic of anisotropic etching.

  • PDF

Purification and Characterization of Catechol 2,3-Dioxygenase from Recombinant Strain E. coli CNU312. (재조합균주 E. coli CNU312가 생산하는 Catechol 2,3-Dioxygenase의 정제 및 특성)

  • 임재윤;최경호;최병돈
    • Korean Journal of Microbiology
    • /
    • v.36 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Catechol 2,3-dioxygenase was purified from recombinant strain E. coli CNU312 carrying the tomB gene which was cloned from toluene-degrading Burkholderia cepacia G4. The purification of this enzyme was performed by acetone precipitation, Sephadex G-75 chromatography, electrophoresis and electro-elution. The molecular weight of native enzyme was about 140.4 kDa and its subunit was estimated to be 35 kDa by SDS-PAGE. It means that this enzyme consists of four identical subunits. This enzyme was specifically active to catechol, and$K_(m)$ value and $V_(max)$value of this enzyme were 372.6 $\mu$M and 39.27 U/mg. This enzyme was weakly active to 3-methylcatechol, 4-methylcatechol, and 4-chlorocatechol, but rarely active to 2,3-DHBP. The optimal pH and temperature of the enzyme were pH 8.0 and $40^{\circ}C$. The enzyme was inhibited by $Co^(2+)$, $Mn^(2+)$, $Zn^(2+)$, $Fe^(2+)$, $Fe^(3+)$, and $Cu^(2+)$ ions, and was inactivated by adding the reagents such as N-bromosuccinimide, and $\rho$-diazobenzene sulfonic acid. The activity of catechol 2,3-dioxygenase was not stabilized by 10% concentration of organic solvents such as acetone, ethanol, isopropyl alcohol, ethyl acetate, and acetic acid, and by reducing agents such as 2-mercaptoethanol, dithiothreitol, and ascorbic acid. The enzyme was inactivated by the oxidizing agent $H_(2)$$O_(2)$, and by chelators such as EDTA, and ο-phenanthroline.

  • PDF