• 제목/요약/키워드: $FeSi_2$

검색결과 1,707건 처리시간 0.027초

P형 FeSi2의 열전물성에 미치는 입자크기 및 첨가물 영향 (The Effect of Particle Size and Additives on the Thermoelectric Properties of P-type FeSi2)

  • 배철훈
    • 한국산학기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.1883-1889
    • /
    • 2013
  • Fe-Si계 합금은 우주탐사용으로 응용되고 있는 Si-Ge합금보다는 낮은 성능지수를 나타내지만 원료가 풍부하여 저가이고, 제조가 간단하며, $800^{\circ}C$까지 사용가능한 중고온용 열전발전재료이다. 본 연구에서는 고주파 진공유도로를 이용해서 제조한 p형 $FeSi_2$의 열전물성에 미치는 입자크기 및 첨가물 영향에 대해 조사하였다. 조성입자크기가 작을수록 소결밀도 증가와 함께 입자와 입자간의 연결성 향상에 의해 도전율이 증가하였다. Seebeck 계수는 600~800K에서 최고값을 나타내었고, 잔존하는 ${\varepsilon}$-FeSi 금속전도상에 의해 약간 감소하였다. $Fe_2O_3$$Fe_3O_4$를 첨가한 경우, 잔존 금속전도상 및 Si 결핍양 증가에 의해 도전율은 증가하였고 Seebeck 계수는 감소하였다. 반면에 $SiO_2$를 첨가한 경우에는 도전율과 Seebeck 계수 모두 상승하였다.

기계적 합금화로 제조한 N형 β의 상변화 및 열전 특성 (Phase Transformation and Thermoelectric Properties of N-tyre β Processed by Mechanical Alloying)

  • 어순철
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.375-381
    • /
    • 2002
  • N-type ${\beta}-FeSi_2$ with a nominal composition of $Fe_{0.98}Co_{0.02}Si_2$ powders has been produced by mechanical alloying process and consolidated by vacuum hot pressing. As-milled powders were of metastable state and fully transformed to ${\beta}-FeSi_2$ phase by subsequent isothermal annealing. However, as-consolidated $Fe_{0.98}Co_{0.02}Si_2$ consisted of untransformed mixture of ${\alpha}-Fe_2Si_ 5$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting ${\beta}-FeSi_2$ phase. The transformation behavior of ${\beta}-FeSi_2$ was investigated by utilizing DTA, a modified TGA under magnetic field, SEM, and XRD analyses. Isothermal annealing at $830^{\circ}C$ in vacuum led to the thermoelectric semiconducting ${\beta}-FeSi_2$ phase transformation, but some residual metallic $\alpha$ and $\varepsilon$ phases were unavoidable even after prolonged annealing. Thermoelectric properties were remarkably improved by isothermal annealing due to the transformation from metallic $\alpha$ and $\varepsilon$ phases to semiconducting phases.

고주파 진공유도로로 제작한 Fe-Si계 합금의 열전변환특성 (The Thermoelectric Properties of Fe-Si Alloys Prepared by RF Induction Furnace)

  • 박형진;배철훈
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.632-637
    • /
    • 2000
  • Thermoelectric conversion properties of commercial Fe-Si2 and Fe-Si alloy ingots prepared by RF inductive furnace were investigated. As sintering temperature increased, density of the specimen increased and the phase transformation from metallic phases ($\varepsilon$-FeSi, ${\alpha}$-Fe2Si5) to semiconducting phase (${\beta}$-FeSi2) occurred more effectively. The FeSi phase was detected even after 100hrs of annealing treatment. For the Fesi1.95∼FeSi2.05 specimens prepared by RF inductive furnace, the thermoelectric property improved as the composition of the specimen approached to stoichiometric composition FeSi2. Electrical conductivity of the specimen increased with increasing temperatures showing typical semiconducting behavior. From the electrical conductivity measurements, activation energy in the intrinsic region (above about 700 K) was calculated to be approximately 0.46 eV. In spite of non-doping, the Seebeck coefficient for every specimen exhibited p-type conduction due to Si deficiency. Its maximum value was located at about 475 K, and then decreased abruptly with increasing temperatures. The power factor was governed by the Seebeck coefficient of the specimen more significantly than by electrical conductivity.

  • PDF

Fe-5.8 at.%Si과 (Si 웨이퍼 또는 Fe-Si합금)과의 접합에 의한 규소침투처리 (Siliconizing of Bonded Couple between Fe-5.8at.%Si and(Si Wafer or Fe-Si Alloy))

  • 이성열;정건영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.134-144
    • /
    • 2003
  • Reactive diffusion couples between Fe-5.8at.%Si and (Si wafer, $FeSi_2$, or FeSi alloy) were heat-treated at 1423k. The only layer of $Fe_3Si$ phase was formed in each diffusion couple. The width of $Fe_3Si$ layer was proportional to square root of diffusion time in each kind of diffusion couple. Growth rate of $Fe_3Si$ layer was relied on the concentration of Si in the supplied source of Si atoms. Interdiffusion coefficient of $Fe_3Si$ has been determined from the derived relation between growth rate constant and interdiffusion coefficient in this work. It was shown that the behavior of Kirkendall's void in $Fe_3Si$ layer was not affected by the kind of Si source. But solid solution $\alpha$ was formed in the diffusion couple between Fe-5.8 at.%Si and $Fe_3Si$ alloy. Kirkendall's voids in diffusional $\alpha$ were neglectively smaller than the case of $Fe_3Si$ phase growth.

고압 금형주조용 Al-9%Si-0.3%Mg 합금의 Fe, Mn 함량이 인장특성에 미치는 영향 (Effect of Fe and Mn Contents on the Tensile Property of Al-9%Si-0.3%Mg Alloy for High Pressure Die Casting)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제31권1호
    • /
    • pp.18-25
    • /
    • 2011
  • Effect of Fe and Mn contents on the tensile properties has been studied in Al-9wt%Si-0.3wt%Mg alloy. As Fe content of Al-9wt%Si-0.3wt%Mg-0.5wt%Mn alloy increased from 0.15wt% to 0.45wt%, tensile strength of as-cast alloy decreased from 192 MPa to 174 MPa, and elongation of the alloy also decreased from 4.8% to 4.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with high Fe/Mn ratio of the alloy. However when Mn content of Al-9wt%Si-0.3wt%Mg-0.45wt%Fe alloy increased from 0.3wt% to 0.5wt%, tensile strength of T6 aged alloy increased from 265 MPa to 275 MPa, and elongation of the alloy increased from 2.3% to 3.6%. These improvements attribute to chinese script, ${\alpha}-Al_{15}(Mn,Fe)_3Si_2$ phase shape-modified from ${\beta}-Al_5FeSi$ phase with low Fe/Mn ratio of the alloy.

$\beta$-$FeSi_2$ 단결정의 전기적 광학적인 특성 (Optical and Electrical Properties of $\beta$-$FeSi_2$ Single Crystals)

  • 김남오;김형곤;이우선
    • 한국전기전자재료학회논문지
    • /
    • 제14권8호
    • /
    • pp.618-621
    • /
    • 2001
  • Plate-type $\beta$-FeSi$_2$single crystals were grown using FeSi$_2$, Fe, and Si as starting materials by the chemical transport reaction method. The $\beta$-FeSi$_2$single crystal was an orthorhombic structure. The direct optical energy gap was found to be 0.87eV at 300K. Hall effect shows a n-type conductivity in the $\beta$-FeSi$_2$ single crystal. The electrical resistivity values was 1.608Ωcm and electron mobility was 3x10$^{-1}$ $\textrm{cm}^2$/V.sec at room temperature.

  • PDF

알루미늄에 코팅된 SiO$_2$/Fe$_2$O$_3$막의 적외선 복사특성에 관한 연구 (A Study on the Infrared Radiation Properties for SiO$_2$/Fe$_2$O$_3$Films Coated on aluminum)

  • 강병철;김기호
    • 한국표면공학회지
    • /
    • 제36권5호
    • /
    • pp.406-412
    • /
    • 2003
  • FT-IR and thermography were used to investigate the infrared radiation characteristic of SiO$_2$ film and SiO$_2$/Fe$_2$O$_3$film coated on aluminum. Through FT-TR spectrum, SiO$_2$film showed high infrared absorption in accordance with the stretching vibration of Si-O-Si, and as$ Fe_2$$O_3$was mixed additional absorption band appeared resulting from the stretching vibration of Fe-O at $590cm^{-1}$ and the bond of Si-O-Fe at $900 cm^{-1}$ The two kinds of film measured by the integration method and the reflective method coincided with each other in the wavelength area of infrared absorption and radiation, and corresponded well with Kirchhoff's law as the infrared emissivity is high in wavelength where infrared absorption rate is high. The emissivity of $SiO_2$ film was 0.65 and that of $SiO_2$/Fe$_2$$O_3$film was 0.77, so the addition of$ Fe_2$$O_3$ raised the infrared emissivity by approximately 13%.$ SiO_2$$Fe_2$$O_3$ film is efficient as an infrared radiator at below $100^{\circ}C$. The temperature of heat radiation after 7 minutes was 117$^{\circ}C$ in aluminum plate and $155^{\circ}C$ in $SiO_2$$Fe_2$$O_3$ film, $38^{\circ}C$ higher than the former.

기계적(機械的) 합금화(合金化) 방법(方法)에 의한 Fe-Si 합금제조(合金製造)에 관(關)한 연구(硏究) (A Study on the Synthesis of Fe-Si Alloy by Mechanical Alloying)

  • 전훈;황성민;이성만
    • 산업기술연구
    • /
    • 제19권
    • /
    • pp.107-113
    • /
    • 1999
  • The microstructural evolution during mechanical alloying of elemental Fe and Si powders, average composition $Fe_{30}Si_{70}$ and $Fe_{50}Si_{50}$, has been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Differential scanning calorimetry (DSC). Mechanical alloying was performed by using a SPEX 8000 Mixer/Mill under argon atmosphere with/without hexane as a process control agent (PCA). In the presence of PCA, the milling process was dominated by fracture resulting in the decrease in particle size to about $1{\mu}m$. The structural development with milling time depended on the average composition of starting powders. The mixture of $Fe_{50}Si_{50}$ and $Fe_{30}Si_{70}$ resulted in the formation of FeSi(${\varepsilon}$ - phase) and $FeSi_2$(${\beta}$ - phase), respectively. In the case of $Fe_{33.3}Si_{66.7}$, a mixture and $FeSi_2({\beta})$ was formed. These results were discussed by considering the thermodynamics and kinetics concerning the milling process.

  • PDF

고압 금형 주조용 Al-4 wt%Mg-0.9 wt%Si계 합금의 인장특성에 미치는 Fe, Mn함량의 영향 (Effect of Fe, Mn Content on the Tensile Property of Al-4 wt%Mg-0.9 wt%Si Alloy System for High Pressure Die Casting)

  • 김헌주
    • 한국주조공학회지
    • /
    • 제33권3호
    • /
    • pp.103-112
    • /
    • 2013
  • Effect of Fe and Mn contents on the tensile properties of Al-4 wt%Mg-0.9 wt%Si alloy system has been studied. Common phases of Al-4 wt%Mg-0.9 wt%Si alloy system were ${\alpha}$-Al, $Mg_2Si$, ${\alpha}-Al_{12}(Fe,Mn)_3Si$ and ${\beta}-Al_5FeSi$. As Fe content of Al-4 wt%Mg-0.9 wt%Si alloy system increased from 0.15 wt% to above 0.3 wt%, ${\beta}-Al_5FeSi$ compound appeared. When Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, morphology of plate shaped ${\beta}-Al_5FeSi$ compound changed to chinese script ${\alpha}-Al_{12}(Fe,Mn)_3Si$. As Fe content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Mn alloy increased from 0.15 wt% to 0.4 wt%, tensile strength of the as-cast alloy decreased from 191 MPa to 183 MPa and, elongation of the alloy also decreased from 8.0% to 6.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with low Mn/Fe ratio of the alloy. However, when Mn content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Fe alloy increased from 0.3 wt% to 0.5 wt%, tensile strength of as-cast alloy increased from 181 MPa to 194 MPa and, elongation of the alloy increased from 6.8% to 7.0%. These improvements attribute to the morphology change from ${\beta}-Al_5FeSi$ phase to chinese script, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ phase shape-modified from with high Mn/Fe ratio of the alloy.

접합유리와 반응된 Fe-Hf-N 박막의 연자기 특성 (Soft Magnetic Properties of Fe-Hf-N Films Reacted with Bonding Glass)

  • 김경남;김병호;제해준
    • 한국자기학회지
    • /
    • 제13권1호
    • /
    • pp.6-14
    • /
    • 2003
  • 열처리 온도에 따라 접합유리와의 화학적 반응이 Fe-Hf-N/SiO$_2$, 및 Fe-Hf-N/Cr/SiO$_2$ 박막의 물리적, 자기적 특성에 미치는 영향을 고찰하였다. 접합유리와 반응된 Fe-Hf-N/SiO$_2$ 박막의 연자기 특설은 온도가 증가함에 따라 크게 떨어졌으며, $600^{\circ}C$에서 포화자화값은 1 kG, 보자력이 27 Oe, 10MHz에서의 유효투자율이 70로 자기적 특성이 급격히 열화되었다. 이는 접합유리와의 화학적 반응에 의해 Fe-Hf-N 박막이 H$_{f}$ O$_2$, Fe$_3$O$_4$ 등으로 산화되기 때문인 것으로 나타났다. Fe-Hf-N/Cr/SiO$_2$ 박막의 경우, $600^{\circ}C$에서 포화자화값 13.5kG, 보자력은 4Oe, 10 MHz에서의 유효 투자율이 700으로 Fe-Hf-N/SiO$_2$ 박막보다 연자기 특성 열화가 덜 일어났다. 이는 Fe-Hf-N/Cr/SiO$_2$ 박막의 Cr 층이 Fe-Hf-N 박막의 산화를 억제하여. 일부에서만 HfO$_2$가 생성되고 나머지는 원래의 $\alpha$-Fe상을 유지하기 때문인 것으로 나타났다.