A Study on the Infrared Radiation Properties for SiO$_2$/Fe$_2$O$_3$Films Coated on aluminum

알루미늄에 코팅된 SiO$_2$/Fe$_2$O$_3$막의 적외선 복사특성에 관한 연구

  • Published : 2003.10.01

Abstract

FT-IR and thermography were used to investigate the infrared radiation characteristic of SiO$_2$ film and SiO$_2$/Fe$_2$O$_3$film coated on aluminum. Through FT-TR spectrum, SiO$_2$film showed high infrared absorption in accordance with the stretching vibration of Si-O-Si, and as$ Fe_2$$O_3$was mixed additional absorption band appeared resulting from the stretching vibration of Fe-O at $590cm^{-1}$ and the bond of Si-O-Fe at $900 cm^{-1}$ The two kinds of film measured by the integration method and the reflective method coincided with each other in the wavelength area of infrared absorption and radiation, and corresponded well with Kirchhoff's law as the infrared emissivity is high in wavelength where infrared absorption rate is high. The emissivity of $SiO_2$ film was 0.65 and that of $SiO_2$/Fe$_2$$O_3$film was 0.77, so the addition of$ Fe_2$$O_3$ raised the infrared emissivity by approximately 13%.$ SiO_2$$Fe_2$$O_3$ film is efficient as an infrared radiator at below $100^{\circ}C$. The temperature of heat radiation after 7 minutes was 117$^{\circ}C$ in aluminum plate and $155^{\circ}C$ in $SiO_2$$Fe_2$$O_3$ film, $38^{\circ}C$ higher than the former.

Keywords

References

  1. S. A. Hujiya, Painting Techology, 3 (1990) 95
  2. H. Dakagima, Journal of the Ceramic Society of Japan, 90(7) (1982) 39
  3. S. Kawakuchi, Ceramics, 23 (1988) 301
  4. K. Kawamoto, Eletro-Heat, 22 (1985) 14
  5. L. M. Thomas, Sol-Gel Technology for Thin Films, Fibers, Performs, Electronic and Specialty Shapes, New Jersey (1988) 51
  6. N. Tohge, New Ceramics, 7 (1995) 11
  7. F. Geotti-Bianchini, M. Guglielmi, P. Polato and G. D. Soraru, J. Non-Crystal. Solids, 63 (1984) 251 https://doi.org/10.1016/0022-3093(84)90404-6
  8. F. P. Incropera and D. P. Dewitt, Fundamentals of heat and mass transfer, 4th ed., New York, Chichester, Brisbane, Toronto, Singapore (1996) 672
  9. The ceramic society of japan, Handbook of ceramic engineering, Tokyo (1989) 296
  10. N. Primeau, C. Vautey and M. Langlet, Thin Solid Film, 310 (1997) 47 https://doi.org/10.1016/S0040-6090(97)00340-4
  11. J. Gallardo, A. Duran, D. D. Martino and R. M Almeida, J. Non-Crystalline Solids, 298 (2002) 219 https://doi.org/10.1016/S0022-3093(02)00921-3
  12. C. C. Perry, X. Li and D. N. Waters, Spectrochim., Acta47 (1991) 1487
  13. C. J. Brinker and G. W. Scherer, SOL-GEL SCIENCE, Boston, San Diego, New York, London, Sydney, Tokyo, Toronto (1990) 552
  14. A. Jitianu, M. Crisan, A. Meghea, J. Mater. Chem., 12 (2002) 1401 https://doi.org/10.1039/b110652j
  15. E. M. Moreno, M. Zayat, M. P. Morales, C. J. Sera, A. Roig and D. levy, Langmuir, 18 (2002) 4972 https://doi.org/10.1021/la020037s
  16. D. A. Kouichi, E. G. Yohinobu and S. A. Hisao, Far Infrared Ray, Ningentorekishisha, Tokyo (1999) 192
  17. B. C. Kang, J. J. Choi and K. H. Kim, Journal of the Korean Institute of Surface Engineehng, 35(3) (2002) 149
  18. N. S. Sena, Eletro-Heat, 22 (1985) 32