• Title/Summary/Keyword: $Fe^{2+}

Search Result 11,669, Processing Time 0.041 seconds

Study of Mechanically Alloyed Nano Cu-Fe Particles With a Hetero-Structure (헤테로 구조 Cu-Fe 나노분말의 제조 연구)

  • Uhm, Y.R.;Lee, H.M.;Rhee, C.K.
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.97-100
    • /
    • 2007
  • The magnetic alloys of Cu-Fe ($Cu_{50}Fe_{50},\;Cu_{80}Fe_{20}\;and\;Cu_{90}Fe_{10}$) were prepared by a mechanical alloying method and their structural and magnetic behaviors were examined by X-ray diffraction and Mossbauer spectra. The magnetization curves did not distinctly show the saturation at 70 kOe for the concentrated alloys of $Cu_{80}Fe_{20}\;and\;Cu_{90}Fe_{10}$. The Mossbauer spectrum of $Cu_{80}Fe_{20}$ at room temperature shows one Lorentzian line of the paramagnetic phase, whereas the Mossbauer spectrum of $Cu_{90}Fe_{10}$ consists of sextet Lorentzian line at room temperature and a centered doublet line. The Mossbauer spectra of $Cu_{90}Fe_{10}$ measured in the temperature ranges from 13 to 295 K, implies that $Cu_{90}Fe_{10}$ to consists of two magnetic phases. One superimposed sextet corresponds to the ferromagnetic iron in Cu and the other one indicates the superparamagnetic iron rich phase.

Effect of Co-Substitution on the Crystallization and Magnetic Properties of a Mechanically Milled Nd15(Fe1-xCox)77B8 (x=0-0.6) Alloy

  • Kwon, H.W.;Yang, C.J.
    • Journal of Magnetics
    • /
    • v.7 no.4
    • /
    • pp.143-146
    • /
    • 2002
  • Mechanical milling technique is considered to be a useful way of processing the fine Nd-Fe-B-type powder with high coercivity. In the present study, phase evolution of the $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ (x=0-0.6) alloys during the high energy mechanical milling and annealing was investigated. The effect of Co-substitution on the crystallization of the mechanically milled $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ amorphous material was examined. The Nd-Fe-B-type alloys can be amorphized completely by a high-energy mechanical milling. On annealing of the amorphous material, fine $\alpha$-Fe crystallites form first from the amorphous. These fine $\alpha$-Fe crystallites reacts with the remaining amorphous afterwards, leading to crystallization to $Nd_2Fe_{14}$B phase. The Co-substitution for Fe in $Nd_{15}(Fe_{1-x}Co_{x})_{77}B_{8}$ ($\mu$x=0∼0.6) alloys lower significantly the crystallization temperature of the amorphous phase to the $Nd_2Fe_{14}$B phase. The mechanically milled and annealed $Nd_{15}Fe_{77}B_8$ alloy without Co-substitution exhibits consistently better magnetic properties with respect to the alloys with Co-substitution.

Photoeletrochemical Properties of α-Fe2O3 Film Deposited on ITO Prepared by Cathodic Electrodeposition (음극전착법을 이용한 α-Fe2O3 막의 광전기화학적특성)

  • 이은호;주오심;정광덕;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.842-848
    • /
    • 2003
  • Semiconducting $\alpha$-Fe$_2$O$_3$ film was prepared by the cathodic electrodeposition method on Indium Tin Oxide (ITO) substrate for photoelectrochemical cell application. After heat treatment at 50$0^{\circ}C$, the phase was changed from Fe to $\alpha$-Fe$_2$O$_3$. The phase, morphology, absorbance, and photocurrent density (A/$\textrm{cm}^2$) of the film depended on the preparation conditions: deposition time, applied voltage, and the duration of heat treatment. The $\alpha$-Fe$_2$O$_3$ film was characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM), and UV -Visible Spectrophotometer. The stability of the $\alpha$-Fe$_2$O$_3$ film in aqueous solution was tested at zero bias potential under the white-light source of 100 mW/$\textrm{cm}^2$. The apparent grain size of the films formed at -2.0 V was larger than that grown at -2.5 V. The $\alpha$-Fe$_2$O$_3$ film deposited at -2.0 V for 180 s and heat-treated at 50$0^{\circ}C$ for 1 h showed the predominant photocurrent of 834$\mu$A/$\textrm{cm}^2$.

Synthesis of Fe/SiO2 Core-Shell Nanoparticles by a Reverse Micelle and Sol-Gel Processes

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.298-302
    • /
    • 2012
  • Fe/$SiO_2$ core-shell type composite nanoparticles have been synthesized using a reverse micelle process combined with metal alkoxide hydrolysis and condensation. Nano-sized $SiO_2$ composite particles with a core-shell structure were prepared by arrested precipitation of Fe clusters in reverse micelles, followed by hydrolysis and condensation of organometallic precursors in micro-emulsion matrices. Microstructural and chemical analyses of Fe/$SiO_2$ core-shell type composite nanoparticles were carried out by TEM and EDS. The size of the particles and the thickness of the coating could be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TEOS within the micro-emulsion. The water/surfactant molar ratio influenced the Fe particle distribution of the core-shell composite particles, and the distribution of Fe particles was broadened as R increased. The particle size of Fe increased linearly with increasing $FeNO_3$ solution concentration. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The average size of synthesized Fe/$SiO_2$ core-shell type composite nanoparticles was in a range of 10-30 nm and Fe particles were 1.5-7 nm in size. The effects of synthesis parameters, such as the molar ratio of water to TEOS and the molar ratio of water to surfactant, are discussed.

Comparison of the Therapeutic Efficacy and Technical Outcomes between Conventional Fixed Electrodes and Adjustable Electrodes in the Radiofrequency Ablation of Benign Thyroid Nodules

  • Jae Ho Shin;Minkook Seo;Min Kyoung Lee;So Lyung Jung
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.199-209
    • /
    • 2024
  • Objective: This study aimed to compare therapeutic efficacy and technical outcomes between adjustable electrode (AE) and conventional fixed electrode (FE) for radiofrequency ablation (RFA) of benign thyroid nodules. Materials and Methods: Between 2013 and 2021, RFA was performed on histologically proven benign thyroid nodules. For the AE method, AE length ≥ 1 cm with higher power and < 1 cm with lower power were utilized for ablating feeding vessels and nodules, especially those near anatomical structures, respectively. The therapeutic efficacy (volume reduction rate [VRR], complication rate, and regrowth rate) and technical outcomes (total energy delivery, ablated volume/energy, RFA time, and ablated volume/time) of FE and AE were compared. Continuous parameters were compared using a two-sample t-test or Mann-Whitney U test, and categorical parameters were compared using a chi-squared test or Fisher's exact test. Results: A total of 182 nodules (FE: 92 vs. AE: 90) in 173 patients (mean age ± standard deviation, 47.0 ± 14.7 years; female, 90.8% [157/173]; median follow-up, 726 days [interquartile range, 441-1075 days]) were analyzed. The therapeutic efficacy was comparable, whereas technical outcomes were more favorable for AE. Both electrodes demonstrated comparable overall median VRR (FE: 92.4% vs. AE: 84.9%, P = 0.240) without immediate major complications. Overall regrowth rates were comparable between the two groups (FE: 2.2% [2/90] vs. AE: 1.1% [1/90], P > 0.99). AE demonstrated a shorter median RFA time (FE: 811 vs. AE: 627 seconds, P = 0.009). Both delivered comparable median energy (FE: 42.8 vs. AE: 29.2 kJ, P = 0.069), but AE demonstrated higher median ablated volume/energy and median ablated volume/time (FE: 0.2 vs. AE: 0.3 cc/kJ, P < 0.001; and FE: 0.7 vs. AE: 1.0 cc/min, P < 0.001, respectively). Conclusion: Therapeutic efficacy between FE and AE was comparable. AE demonstrated better technical outcomes than FE in terms of RFA time, ablated volume/energy, and ablated volume/time.

Evaluation of Manganese Removal from Acid Mine Drainage by Oxidation and Neutralization Method (산화법과 중화법을 이용한 산성광산배수 내 망간 제거 평가)

  • Kim, Bum-Jun;Ji, Won-Hyun;Ko, Myoung-Soo
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.687-694
    • /
    • 2020
  • Two oxidizing agents (KMnO4, H2O2), and one neutralizing agent (NaOH) were applied to evaluate Mn removal in mine drainage. A Mn2+ solution and artificial mine drainage were prepared to identify the Fe2+ influence on Mn2+ removal. The initial concentrations of Mn2+ and Fe2+ were 0.1 mM and 1.0 mM, respectively. The injection amount of oxidizing and neutralizing agents were set to ratios of 0.1, 0.67, 1.0, and 2.0 with respect to the Mn2+ mole concentration. KMnO4 exhibited a higher removal efficiency of Mn2+ than did H2O2 and NaOH, where approximately 90% of Mn2+ was removed by KMnO4. A black MnO2 was precipitated that indicated the oxidation of Mn2+ to Mn4+ after an oxidizing agent was added. In addition, MnO2 (pyrolusite) is a stable precipitate under pH-Eh conditions in the solution. However, relatively low removal ratios (6%) of Mn2+ were observed in the artificial mine drainage that included 1.0 mM of Fe2+. The rapid oxidation tendency of Fe2+ as compared to that of Mn2+ was determined to be the main reason for the low removal ratios of Mn2+. The oxidation of Fe2+ showed a decrease of Fe concentration in solution after injection of the oxidizing and neutralizing agents. In addition, Mn7+ of KMnO4 was reduced to Mn2+ by Fe2+ oxidation. Thus, the concentrations of Mn increased in artificial mine drainage. These results revealed that the oxidation method is more effective than the neutralization method for Mn removal in solution. It should also be mentioned that to achieve the Mn removal in mine drainage, Fe2+ removal must be conducted prior to Mn2+ oxidation.

Oxygen Chemisorption on the Fe Ultrathin Films on Pt(111) Surface (Pt(111) 표면 위에 증착된 Fe 초박막의 산소 흡착에 관한 연구)

  • Park, K.H.;Cho, S.K.;Nahm, T.U.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.183-188
    • /
    • 2008
  • We have studied the chemisorption of oxygen at room temperature on Fe layers deposited on Pt(111) substrates by using core-level X-ray photoelectron spectroscopy. It was found that the oxygen atoms are chemisorbed when the thickness of the Fe layers is not larger than 6 monolayers. Upon post-annealing, it was found that part of the chemisorbed atoms are desorbed at a temperature range 600 - 700 K, after which the intermixing between Fe and Pt atoms occurs. The overall trend of this intermixing was very similar to the Fe/Pt(111) surface without oxygen exposure. The remaining oxygen adatoms, the amount of which is about a half of the total, were found to be eventually desorbed from the surface upon post-annealing at 1000 K. The binding energy of this phase was higher than that of the oxygen atoms desorbed at lower temperatures by 1.3 eV.

Mechanism and Adsorption Capacity of Arsenic in Water by Zero-Valent Iron (수용액 중 영가 철의 비소흡착 및 반응기작 구명)

  • Yoo, Kyung-Yoal;Ok, Yong-Sik;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.3
    • /
    • pp.157-162
    • /
    • 2006
  • Objective of this research was to evaluate optimal conditions of arsenic adsorption in water by zero-valent iron (ZVI). Batch experiment showed that adsorption of arsenic by ZVI followed a Langmuir isotherm model. The masses of As(V) adsorbed onto ZVI were increased as decreasing pH of the reacting solution (pH 3: 2.05, pH 5: 1.82, pH 7: 1.24, pH 9: 1.03 mg As/g $Fe^0$) and as increasing the temperature ($15^{\circ}C$ : 1.59, $25^{\circ}C$ : 1.81, 35 : $1.93^{\circ}C$ mg As/g $Fe^0$). The SEM and EDS (energy dispersive X-ray spectrometer) analysis of morphology and structure of ZVI before and after reacting with arsenic in water revealed that a relatively smooth and large surface of ZVI was transformed into a coarse and small surface particle after the reaction. The EDS spectra on the chemical composition of ZVI demonstrated that arsenic was incorporated into ZVI by adsorption mechanism. The XRD analysis also identified that the only peak for $Fe^0$ in the ZVI before the reaction and confirmed that $Fe^0$ was transformed into $Fe_2O_3$ and FeOOH, and As into $FeAsO_4{\cdot}2H_2O$.

Synthesis and physicochemical characterization of NixZnx-Fe2O4/MWCNT nanostructures as enzyme mimetics with peroxidase-like catalytic activity

  • Salarizadeh, Navvabeh;Sadri, Minoo;Hosseini, Hassan;Sajedi, Reza. H.
    • Carbon letters
    • /
    • v.24
    • /
    • pp.103-110
    • /
    • 2017
  • Carbon-based magnetic nanostructures in several instances have resulted in improved physicochemical and catalytic properties when compared to multi-wall carbon nanotubes (MWCNTs) and magnetic nanoparticles. In this study, magnetic MWCNTs with a structure of $Ni_xZn_xFe_2O_4/MWCNT$ as peroxidase mimics were fabricated by the one-pot hydrothermal method. The structure, composition and morphology of the nanocomposites were characterized with X-ray diffraction (XRD), Fourier transform infrared spectroscopy and transmission electron microscopy. The magnetic properties were investigated with a vibrating sample magnetometer. The peroxidase-like catalytic activity of the nanocomposites was investigated by colorimetric and electrochemical tests with 3,3',5,5'-tetramethylbenzidine (TMB) and $H_2O_2$ as the substrates. The results show that the synthesis of the nanocomposites was successfully performed. XRD analysis confirmed the crystalline structures of the $Ni_xZn_xFe_2O_4/MWCNT$ nanohybrids and MWCNTs. The main peaks of the $Ni_xZn_xFe_2O_4/MWCNT$s crystals were presented. The $Ni_{0.25}Zn_{0.25}Fe_2O_4/MWCNT$ and $Ni_{0.5}Zn_{0.5}Fe_2O_4/MWCNT$ nanocatalysts showed nearly similar physicochemical properties, but the $Ni_{0.5}Zn_{0.5}Fe_2O_4/MWCNT$ nanocatalyst was more appropriate than the $Ni_{0.25}Zn_{0.25}Fe_2O_4/MWCNT$ nanocatalyst in terms of the magnetic properties and catalytic activity. The optimum peroxidase-like activity of the nanocatalysts was obtained at pH 3.0. The $Ni_{0.5}Zn_{0.5}Fe_2O_4/MWCNT$ nanocatalyst exhibited a good peroxidase-like activity. These magnetic nanocatalysts can be suitable candidates for future enzyme-based applications such as the detection of glucose and $H_2O_2$.

Effects of Fe2O3 Addition on Piezoelectric Properties of Pb(Ni1/3Nb2/3)O3-PbTiO3 Ceramics for Actuator Applications (액츄에이터 응용을 위한 Pb(Ni1/3Nb2/3)O3-PbTiO3 세라믹스의 압전 특성에 미치는 Fe2O3 첨가 영향)

  • Lim Eun-Kyeong;Kim Chang-Il;Lee Young-Jin;Im Jong-In;Paik Jong-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.935-941
    • /
    • 2006
  • In this paper, the dielectric and piezoelectric properties of $0.4Pb(Ni_{1/3}Nb_{2/3})O_3+0.6Pb(Zr_{405}Ti_{595})O_3+X\;wt%\;Fe_2O_3$ ceramics were investigated with the addition of $Fe_2O_3$ and sintering temperature. Dielectric constant and piezoelectric constant increased with amount of $Fe_2O_3$ to 0.25 wt% and then decreased the further addition of $Fe_2O_3$. It seems that $Fe_2O_3$ acts as a sintering aid at the sintering temperature of $1150^{\circ}C$. By the addition of $Fe_2O_3$., sintering temperature of the system was lowered from $1250^{\circ}C\;to\;1100^{\circ}C$. The piezoelectric properties showed the maximum value of ${\varepsilon}r=4669,\;d_{33}=810(10^{-12}m/V)$, kp = 77 %, Qm = 55, in $0.4Pb(Ni_{1/3}Nb_{2/3})O_3\;-0.6Pb(Zr_{0.405}Ti_{0.595})O_3+0.25wt%\;Fe_2O_3$ ceramics having composition near the morphotropic phase boundary. The composition may be appropriate for actuator materials because of high piezoelectric constant and electromechanical coupling factor.