• Title/Summary/Keyword: $Fe^{2+}

Search Result 11,649, Processing Time 0.037 seconds

Activation of persulfate by UV and Fe2+ for the defluorination of perfluorooctanoic acid

  • Song, Zhou;Tang, Heqing;Wang, Nan;Wang, Xiaobo;Zhu, Lihua
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.185-197
    • /
    • 2014
  • Efficient defluorination of perfluorooctanoic acid (PFOA) was achieved by integrating UV irradiation and $Fe^{2+}$ activation of persulfate ($S_2O{_8}^{2-}$). It was found that the UV-$Fe^{2+}$, $Fe^{2+}-S_2O{_8}^{2-}$, and UV-$S_2O{_8}^{2-}$ processes caused defluorination efficiency of 6.4%, 1.6% and 23.2% for PFOA at pH 5.0 within 5 h, respectively, but a combined system of UV-$Fe^{2+}-S_2O{_8}^{2-}$ dramatically promoted the defluorination efficiency up to 63.3%. The beneficial synergistic behavior between $Fe^{2+}-S_2O{_8}^{2-}$ and UV-$S_2O{_8}^{2-}$ was demonstrated to be dependent on $Fe^{2+}$ dosage, initial $S_2O{_8}^{2-}$ concentration, and solution pH. The decomposition of PFOA resulted in generation of shorter-chain perfluorinated carboxylic acids (PFCAs), formic acid and fluoride ions. The generated PFCAs intermediates could be further defluorinated by adding supplementary $Fe^{2+}$ and, $S_2O{_8}^{2-}$ and re-adjusting solution pH in later reaction stage. The much enhanced PFOA defluorination in the UV-$Fe^{2+}-S_2O{_8}^{2-}$ system was attributed to the fact that the simultaneous employment of UV light and $Fe^{2+}$ not only greatly enhanced the activation of $S_2O{_8}^{2-}$ to form strong oxidizing sulfate radicals ($SO{_4}^{\cdot-}$), but also provided an additional decarboxylation pathway caused by electron transfer from PFOA to in situ generated $Fe^{3+}$.

Degradation of Triclosan by the Photolysis, the Fenton, and the Hybrid Reaction with Fe$^{2+}$ and UV : A Comparative Study (광반응, 펜톤, 그리고 Fe$^{2+}$와 UV의 조합반응을 이용한 Triclosan의 분해 : 공정 비교 연구)

  • Son, Hyun-Seok;Zoh, Kyung-Duk
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.517-523
    • /
    • 2008
  • The degradation mechanism of Triclosan(TCS), which is a potent broad-spectrum antimicrobial agent and has been considered as an emerging pollutant, was investigated in the Fenton and the hybrid reaction with Fe$^{2+}$ and UV-C. The results show that the Fe$^{2+}$ is oxidized to 30% by $H_2O_2$, 28% by UV-C, and 15% by UV-A for 10 min. The degradation rate of TCS for beginning time(10 min) was higher in UV-C only reaction than that in hybrid reaction, which of the order was inverted according to the lapse of reaction time. The effect of methanol was the greatest in Fenton reaction, in which the degradation rate of TCS decreased from 90% to 5% by the addition of methanol. Chloride, ionic intermediate, was produced to 77% for 150 min of hybrid reaction(Fe$^{2+}$ + UV-C), which was the greatest. In case with methanol, the generation rate of chloride for 15 min was ignorable in all reactions($\leq$2%) but the hybrid reaction with Fe$^{2+}$ and UV-C(12%). Additionally, the removal rate of TOC in each reaction was estimated as the followed orders; Fe$^{2+}$ + UV-C > Fe$^{2+}$ + $H_2O_2$ > Fe$^{2+}$ + UV-A > UV-C > UV-A. However, the Fenton reaction was almost stopped after 90 min because the reaction between Fe$^{2+}$ and $H_2O_2$ cannot be kept on without adding the oxidant. The phenomena was not observed in the hybrid reaction. In view of generating chloride, the reductive degradation of TCS may be in the hybrid reaction with Fe$^{2+}$ and UV-C, which is favorable to mineralize halogenated organic compounds such as TCS. Consequently, the hybrid process with Fe$^{2+}$ and UV-C may be considered as the alternative treatment method for TCS.

Soft x-ray Synchrotron Radiation Spectroscopy Study of Molecule-based Nano Bioparticles Containing Fe (철원소를 함유한 분자기반 생체물질 나노입자들의 연 x선 방사광 분광 연구)

  • Lee, Eun-Sook;Kim, D.H.;Hwang, Ji-Hoon;Lee, Ki-Ho;Kang, J.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.4
    • /
    • pp.125-129
    • /
    • 2012
  • By employing soft x-ray absorption spectroscopy (XAS) and soft x-ray magnetic circular dichroism (XMCD), the electronic structures of molecule-based nano bioparticles, such as Helicobacter pylori ferritin (H. pylori ferritin), Heme, $NaM[Fe(CN)_6]{\cdot}H_2O$-type Prussian Blue (M=Co, Ni) analogue, have been investigated. The measured Fe 2p XAS spectra reveal that Fe ions are trivalent ($Fe^{3+}$) in H. pylori ferritins, while they are in the $Fe^{2+}-Fe^{3+}$ mixed-valent states in $NaM[Fe(CN)_6]{\cdot}H_2O$ Prussian Blue analogues (M=Co, Ni). According to the Fe 2p XMCD spectrum of high-state H. pylori ferritin, all the $Fe^{3+}$ ions have the same local symmetry and their magnetic moments are aligned in the same direction. It is also found that the Fe 3d orbitals in $NaM[Fe(CN)_6]{\cdot}H_2O$ have a strong covalent bonding to $(CN)^-$ ligands, but with a very weak bonding to the 2p orbitals of O ligands.

The Influence of $O_2$ Partial Pressure on Soft Magnetic Properties of As-deposited Fe-Sm-O Thin Films (산소분압에 따른 Fe-Sm-O계 박막의 연자기적 성질)

  • Yoon, T.S.;Cho, W.S.;Koo, E.S.;Li, Ying;Park, J.B.;Kim, C.O.
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.755-759
    • /
    • 2000
  • The influence of $O_2$partial presure on saturation magnetization, coercivity and effective permeability(0.5~100MHz) of as-deposited Fe-Sm-O thin films, which were fabricated by RF magnetron reactive sputtering method, were investigated. The nanocrystalline Fe(sub)83.4Sm(sub)3.4O(sub)13.2 thin film fabricated at $O_2$partial pressure of 5% exhibits the best magnetic softness with saturation magnetization of 18kG, coercivity of 0.82 Oe and effective permeability about 2,600 at 0.5~100MHz. $\alpha$-Fe grain size is decreased with increasing $O_2$partial pressure. In case of $O_2$partial pressure of 10%, it is observed that FeO compound is formed and soft magnetic properties are decreased. The electrical resistivity of Fe-Sm-O thin films were increased with increasing $O_2$partial pressure, the electrical resistivity of Fe(sub)83.4Sm(sub)3.4O(sub)13.2 thin film with the best soft magnetic properties was 130 $\mu$$\Omega$cm. Therefore, It is assumed that the good soft magnetic properties of Fe(sub)83.4Sm(sub)3.4O(sub)13.2 thin film results from high electrical resistivity and decreasing $\alpha$-Fe grain size due to precipitation of Sm-Oxide phase.

  • PDF

Crystal Chemistry of Ilmenite from the Hadong anorthosite Massif (하동 회장암체 내에서 산출하는 티탄철석의 결정화학)

  • 최진범;조현구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.43-53
    • /
    • 1996
  • The detailed crystal chemistry of ilmenite from the Hadong massif was studied by the EPMA, M ssbauer spectroscopy, and Rietveld structural refinement using X-ray powder diffraction data. The ilmenite-bearing anorthosite shows complicated mineral assemblage which consists of plagioclase, clinopyroxene, hornblende, biotite, chlorite, apatite, allanite, and zircon. Anorthite is andesine in composition (Ab 28-57), and clinopyroxene drops in ferro-hypersthene (Fs 62-70). Ilmenite is trigonal symmetry with R space group, whose structure shows the alternation of Fe2+ (M1 site) octahedral layer and Ti (M2 site) layer along c axis. M ssbauer spectroscopy indicates that there are three doubles which assigned to couple of Fe2+($\delta$=0.812, 0.890mm/sec) and one Fe3+($\delta$=0.303mm/sec) in octahedral sites. Their Fe3+/$\Sigma$Fe is 0.065 and chemical formula is established as Fe2+0.94Fe3+0.07Ti0.97O3 using both EPMA and M ssbauer analysis. Rietveld structural refinement reveals that site occupancies of Fe in M1 and Ti in M2 are 91.2% and 89.4%, respectively. This implies that Ti and Fe2+ are alternatively occupy M1 and M2 sites. In addition, smaller M2 site is more preferable to Fe3+ occupancy over M1.

  • PDF

Phase Transformation and Thermoelectric Properties of N-tyre β Processed by Mechanical Alloying (기계적 합금화로 제조한 N형 β의 상변화 및 열전 특성)

  • Eo, Sun-Cheol
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.375-381
    • /
    • 2002
  • N-type ${\beta}-FeSi_2$ with a nominal composition of $Fe_{0.98}Co_{0.02}Si_2$ powders has been produced by mechanical alloying process and consolidated by vacuum hot pressing. As-milled powders were of metastable state and fully transformed to ${\beta}-FeSi_2$ phase by subsequent isothermal annealing. However, as-consolidated $Fe_{0.98}Co_{0.02}Si_2$ consisted of untransformed mixture of ${\alpha}-Fe_2Si_ 5$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting ${\beta}-FeSi_2$ phase. The transformation behavior of ${\beta}-FeSi_2$ was investigated by utilizing DTA, a modified TGA under magnetic field, SEM, and XRD analyses. Isothermal annealing at $830^{\circ}C$ in vacuum led to the thermoelectric semiconducting ${\beta}-FeSi_2$ phase transformation, but some residual metallic $\alpha$ and $\varepsilon$ phases were unavoidable even after prolonged annealing. Thermoelectric properties were remarkably improved by isothermal annealing due to the transformation from metallic $\alpha$ and $\varepsilon$ phases to semiconducting phases.

Electro-Magnetic Properties of Mn-Zn Ferrite Single Crystal with Small Variation of $Fe_2O_3$ Concentration ($Fe_2O_3$ 미량 변화에 따른 Mn-Zn 페라이트 단결정의 전자기적 특성)

  • 제해준;변순천;홍국선;장성도
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.791-796
    • /
    • 1993
  • The electro-magnetic properties of the Mn-Zn ferrite single crystal with small variation of Fe2O3 concentration at the high permeability composition, 53mol% Fe2O3-28.5mol% MnO-18.5mol% ZnO, have been studied for the VCR magnetic head application. With the increase of the Fe2O3 concentration, the Fe2+ concentration increased, the specific resistivity decreased, the secondary maximum permeability shifted to the lower temperature, and the initial permeability decreased. It was concluded that the small variation of $\pm$0.5mol% Fe2O3 concentration greatly affected the electro-magnetic properties of Mn-Zn ferrite single crystals. At the composition of 53mol% Fe2O3, the initial permeability was comparatively high (650 at 5MHz) and its temperature dependence was small.

  • PDF

Optical and Electrical Properties of $\beta$-$FeSi_2$ Single Crystals ($\beta$-$FeSi_2$ 단결정의 전기적 광학적인 특성)

  • 김남오;김형곤;이우선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.8
    • /
    • pp.618-621
    • /
    • 2001
  • Plate-type $\beta$-FeSi$_2$single crystals were grown using FeSi$_2$, Fe, and Si as starting materials by the chemical transport reaction method. The $\beta$-FeSi$_2$single crystal was an orthorhombic structure. The direct optical energy gap was found to be 0.87eV at 300K. Hall effect shows a n-type conductivity in the $\beta$-FeSi$_2$ single crystal. The electrical resistivity values was 1.608Ωcm and electron mobility was 3x10$^{-1}$ $\textrm{cm}^2$/V.sec at room temperature.

  • PDF

Effect of Si on Corrosion of Fe-Cr and Fe-Cr-Ni Alloys in wet CO2 Gas

  • Nguyen, T.D.;Zhang, J.;Young, D.J.
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.127-131
    • /
    • 2015
  • Model alloys Fe-9Cr, Fe-20Cr and Fe-20Cr-20Ni (wt. %) with 0.1 and 0.2 % Si were exposed to $Ar-20CO_2-20H_2O$ gas at $818^{\circ}C$. The undoped alloys formed a thick iron-rich oxide scale. The additions of Si reduced scaling rates of Fe-9Cr to some extent but significantly suppressed the formation of iron oxide scales on Fe-20Cr and Fe-20Cr-20Ni. Carburisation also occurred in all undoped alloys, but not in Si-containing Fe-20Cr and Fe-20Cr-20Ni. Protection against carburisation was a result of the formation of an inner scale layer of silica.