• Title/Summary/Keyword: $Fe(NO_3)_3$solution

Search Result 150, Processing Time 0.03 seconds

Effect of Fe(NO3)2 Concentration on Electrochemical Behavior of SCM430 in Zinc Phosphate Conversion Coating Solution (아연계 인산염 피막용액에서 Fe(NO3)2 농도가 SCM430 합금의 전기화학적 거동에 미치는 영향)

  • Kwon, Duyoung;Song, Pung-Keun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.233-238
    • /
    • 2019
  • The formation behavior of zinc phosphate conversion coating (ZPCC) on SCM430 alloy was investigated in 25 vol.% of 1M ZnO + 170 ml/L solution containing various $Fe(NO_3)_2$ concentrations, using open-circuit potential(OCP), electrochemical impedance spectroscopy(EIS), cyclic polarization(CP) curve and tape peel test. OCP of SCM430 alloy and corrosion current density increased with increasing $Fe(NO_3)_3$ concentration. Resistance of films formed on SCM430 alloy by chemical conversion treatment decreased with increasing $Fe(NO_3)_3$ concentration. Color and adhesion of chemical conversion coatings became darker and worse, respectively, with increasing $Fe(NO_3)_3$ concentration. It is concluded that addition of $Fe(NO_3)_3$ into a zinc phosphating bath leads to faster reaction to form porous surface coatings with poor adhesion and corrosion resistance.

Effect of Nitrate on Iron Reduction and Phosphorus Release in Flooded Paddy Soil (논토양에서 질산 이온이 철의 환원과 인의 용출에 미치는 영향)

  • Chung, Jong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.2
    • /
    • pp.165-170
    • /
    • 2009
  • The increase in P availability to rice under flooded soil conditions involves the reductive dissolution of iron phosphate and iron (hydr)oxide phosphate. However, since $NO_3^-$ is a more favourable electron acceptor in anaerobic soils than Fe, high$NO_3^-$ loads function as a redox buffer limiting the reduction of Fe. The effect of adding $NO_3^-$ on Fe reduction and P release in paddy soil was investigated. Pot experiment was conducted where $NO_3^-$ was added to flooded soil and changes of redox potential and $Fe_2^+$, $NO_3^-$ and $PO_4^{3-}$ concentrations in soil solution at 10 cm depth were monitored as a function of time. Redox potential decreased with time to -96 mV, but it was temporarily poised at about 330${\sim}$360 mV when $NO_3^-$ was present. Nitrate addition to soil led to reduced release of $Fe_2^+$ and prevented the solubilization of P. Phosphate in pore water began to rise soon after incubation and reached final concentrations about 0.82 mg P/L in the soil without $NO_3^-$ addition. But, in the soil with $NO_3^-$ addition, $PO_4^{3-}$ in pore water was maintained in the range of 0.2${\sim}$0.3 mg P/L. The duration of inhibition in $Fe_2^+$ release was closely related to the presence of $NO_3^-$, and the timing of $PO_4^{3-}$ release was inversely related to the $NO_3^-$ concentration in soil solution. The results suggest that preferential use of $NO_3^-$ as an electron acceptor in anaerobic soil condition can strongly limit Fe reduction and P solubilization.

The change of color and physical properties of zirconia according to the variation of concentration and dipping time of Fe(NO3)3solution (Fe(NO3)3 수용액의 농도와 침지시간에 따른 지르코니아의 색상 및 특성 변화)

  • Seo, Jeong Il;Park, Won Uk;Go, Jae-Sook
    • Journal of Technologic Dentistry
    • /
    • v.38 no.4
    • /
    • pp.281-290
    • /
    • 2016
  • Purpose: The increased aesthetic requirements and demands of patients have resulted in the developments of coloring liquid for zirconia. Methods: In this study, zirconia block was dipped into $Fe(NO_3)_3$solution, which showed a color and then concentration of $Fe(NO_3)_3$and zirconia's color and physical properties depending on the dipping time were observed and compared with exclusive coloring solutions. As the result, the following conclusions were obtained. Results: When compared with the specimens that were colored using exclusive solutions, $L^*$ value rose overall depending on the concentration of $Fe(NO_3)_3$and $a^*$ value was red in the form of (+) in all the specimens. Also, $b^*$ value was in the form of (+) at 0.5 to $1{\ss}fl$, but was in the form of (-) at 1.5 to $2{\ss}fl$. The dipping time did not highly influence $L^*$ value, but $a^*$ value and $b^*$ value were directly opposite to the specimens, which were not colored, except the sample that was dipped for only 2 seconds. When compared with exclusive coloring solutions, $Fe(NO_3)_3$had the most similar color at 0.5 to $1{\ss}fl$ and the longer the coloring time, the higher the rate of color change became. In relation to the density change depending on the addition of $Fe(NO_3)_3$, there was the lowest density at $2{\ss}fl$ and the density was increased in the specimens that were not colored. Conclusion: These results show that $Fe(NO_3)_3$solution can be used to make colored zirconia. It is expected that newly made colored zirconia can be used in clinical practice because the colored zirconia not only possesses the mechanical properties that all ceramic core material should have but also was biocompatible to a living cells.

The Properties and Manufacturing of $Fe{3-X}-Ni_XO_4$Films by Spin-Spray Ferrite Method (스핀스레이법 의한 $Fe{3-X}-Ni_XO_4$ 페라이트 박막의 제작과 그 특성)

  • 김명호;장경욱;부정기
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.652-657
    • /
    • 1998
  • We have performed spin-spray ferrite plating of $Fe{_3}{-X}-Ni_XO_4$(X=0.17~0.26) films in the temperature region $T=80~95[^{\circ}C]$. A reaction solution and an oxidizing solution were supplied to a reaction chamber by supply pump. The solubility limit of Ni increases as the substrate temperature increase, from X=0.17 at $80[^{\circ}C]$ to X=0.26 at $95[^{\circ}C]$. All the films are polycrystalline with no preferential orientation, and the magnetization exhibits no definite anisotropy. Grain size in the films increases as X increases, reaching $0.87[\mu{m}]$ at X=0.26.

  • PDF

Enhance degradation of insecticide chlorpyrifos by iron salts and potassium persulfate during zerovalent iron treatment in aqueous solution

  • Rahman, M. Mokhlesur;Hwang, Jung-In;Kwak, Se-Yeon;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Degradation of the insecticide O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate (chlorpyrifos) in aqueous solution was investigated using iron salts and potassium persulfate during ZVI treatment through a series of batch experiments. The degradation rate of chlorpyrifos increased with increases in the concentrations of iron salts and potassium persulfate in the aqueous system. Ferric chloride was found to be the most effective iron salt for the ZVI-mediated degradation of chlorpyrifos in aqueous solution. Further, the iron salts tested could be arranged in the following order in terms of their effectiveness: $FeCl_3$> $Fe_2(SO_4)_3$> $Fe(NO_3)_3$. The persulfate-ZVI system could significantly degrade chlorpyrifos present in the aqueous medium. This revealed that chlorpyrifos degradation by treatment with $Fe^0$ was promoted on adding ferric chloride and potassium persulfate. The kinetics of the degradation of chlorpyrifos by persulfate-amended $Fe^0$ was higher than that for iron-salt-amended $Fe^0$. This suggests that using a sequential $Fe^0$ reduction-ferric chloride or $Fe^0$ reduction-persulfate process may be an effective strategy to enhance the removal of chlorpyrifos in contaminated water.

Microstructure and Properties of Nano-Sized Ni-Fe Alloy Dispersed Al2O3 Composites (Ni-Fe 합금입자 분산 Al2O3 나노복합재료의 미세조직 및 특성)

  • 남궁석;정재영;오승탁;이재성;이홍재;정영근
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.161-166
    • /
    • 2002
  • Processing and properties of $Al_2O_3$ composites with Ni-Fe content of 10 and 15 wt% were investigated. Homogeneous powder mixtures of $Al_2O_3$/Ni-Fe alloy were prepared by the solution-chemistry route using $Al_2O_3$, $Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders. Microstructural observation of composite powder revealed that Ni-Fe alloy particles with a size of 20nm were homogeneously dispersed on $Al_2O_3$ powder surfaces. Hot-pressed composites showed enhanced fracture toughness and magnetic response. The properties are discussed based on the observed microstructural characteristics.

Temperature and Concentration Dependencies of Chemical Equilibrium for Reductive Dissolution of Magnetite Using Oxalic Acid

  • Lee, Byung-Chul;Oh, Wonzin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.187-196
    • /
    • 2021
  • Chemical equilibrium calculations for multicomponent aqueous systems involving the reductive dissolution of magnetite (Fe3O4) with oxalic acid (H2C2O4) were performed using the HSC Chemistry® version 9. They were conducted with an aqueous solution model based on the Pitzer's approach of one molality aqueous solution. The change in the amounts and activity coefficients of species and ions involved in the reactions as well as the solution pH at equilibrium was calculated while changing the amounts of raw materials (Fe3O4 and H2C2O4) and the system temperature from 25℃ to 125℃. In particular, the conditions under which Fe3O4 is completely dissolved at high temperatures were determined by varying the raw amount of H2C2O4 and the temperature for a given raw amount of Fe3O4 fed into the aqueous solution. When the raw amount of H2C2O4 added was small for a given raw amount of Fe3O4, no undissolved Fe3O4 was present in the solution and the pH of the solution increased significantly. The formation of ferrous oxalate complex (FeC2O4) was observed. The equilibrium amount of FeC2O4 decreased as the raw amount of H2C2O4 increased.

Preparation of Fe2O3 Supported γ-alumina Catalyst by Hydrothermal Method (수열법에 의한 Fe2O3 담지 감마알루미나 촉매제조)

  • 박병기;이정민;서동수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.683-689
    • /
    • 2003
  • The cylindrical ${\gamma}$-alumina pellets were prepared using amorphous alumina and pore generating agent. Its were immersed in aqueous solution of the mixture of Fe(NO$_3$)$_3$.9$H_2O$ and $CH_3$COOH, Fe(NO$_3$)$_3$.9$H_2O$ and $CH_3$COOH and HNO$_3$, and Fe(NO$_3$)$_3$.9$H_2O$ and HNO$_3$. The pellets thus were hydrothermally treated at 20$0^{\circ}C$ for 3 h in autoclave, and were investigated morphologies and changes of crystal pore characteristics, $N_2$ adsorption and desorption isotherms, active sites and mechanical strength etc. According to the preparation method, acicular platelet pseudo-boehmite crystals of 0.1~0.3 ${\mu}{\textrm}{m}$ size were transformed into acicular pseudo-boehmite cristals of 0.5~2 ${\mu}{\textrm}{m}$ size having the same crystal structure. When ${\gamma}$-alumina pellets were immersed in aqueous solution of the mixture of Fe(NO$_3$)$_3$.9$H_2O$ and $CH_3$COOH and then were hydrothermally treated, pore volume between 100 $\AA$ and 1000 $\AA$ was increased from 0.34 ㏄/g to 0.86 ㏄/g, and the gap of $N_2$ adsorption and desorption hysteresis loop was decreased due to increasement of pore size. New active site that could adsorb the C-H functional group was created on the catalist. Also, mechanical strength of catalyst was increased from 1.06 ㎫ to 1.36 ㎫.

Effect of Nitrate in Irrigation Water on Iron Reduction and Phosphate Release in Anoxic Paddy Soil Condition (관개용수 중의 질산 이온이 논토양의 철 환원과 인 용출에 미치는 영향)

  • Kim, Byoung-Ho;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.68-74
    • /
    • 2010
  • Since ${NO_3}^-$ is amore favorable electron acceptor than Fe, high ${NO_3}^-$ loads function as a redox buffer limiting the reduction of Fe and following release of ${PO_4}^{3-}$ in flooded paddy soil. The effect ${NO_3}^-$ loaded through irrigation water on Fe reduction and ${PO_4}^{3-}$ release in paddy soil was investigated. Pot experiment was conducted where irrigation water containing 5 or 10 mg N $L^{-1}$ of ${NO_3}^-$ was continuously applied at 1 cm $day^{-1}$, and changes of ${NO_3}^-$, $Fe^{2+}$ and ${PO_4}^{3-}$ concentrations in soil solution at 5 and 10 cm depths beneath the soil surface were monitored as a function of time. Irrigation of rice paddy with water containing 5 mg N $L^{-1}$ of ${NO_3}^-$ led to reduced release of $Fe^{2+}$ and prevented solubilization of P at 5 cm depth beneath the soil surface. And application of irrigation water containing 10 mg N $L^{-1}$ of ${NO_3}^-$ could further suppress Fe reduction and solubilization of P through 10 cm depth soil layer beneath the surface. These results suggest that the introduction of high level ${NO_3}^-$ with irrigation water in rice paddy can strongly limit Fe reduction and P solubilization in root zone soil layer in addition to the excessive supply of N to rice plants.

Effect of Nitrification Inhibition on Soil Phosphate Release and Nutrient Absorption and Growth of Rice Plant (질산화작용 억제 처리가 논토양의 인산 가용화와 벼의 양분흡수 및 생육에 미치는 영향)

  • Chung, Jong-Bae;Kim, Byoung-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.4
    • /
    • pp.336-342
    • /
    • 2010
  • In a pot experiment, we studied the effect of nitrification inhibition on Fe reduction and P release in paddy soil and growth and nutrient uptake of rice plant. Recommended level of fertilizers, 6 kg N, 5 kg $P_2O_5$ and 4 kg $K_2O$ per 10a, were applied, and for N fertilizer urea, urea+N-serve, and $KNO_3$ were included. Four 30-day-old seedlings were transplanted in a waterlogged 9 L pot filled with Yuga series soil, and 3 pots were prepared in each N fertilizer treatment. Changes of soil redox potential and concentration of ${NH_4}^-$, ${NO_3}^-$, $Fe^{2+}$ and ${PO_4}^{3-}$ in soil solution at 10 cm depth were monitored, and also the growth and nutrient uptake of rice plants were measured. Concentration of ${NH_4}^+$ in soil solution was highest in urea+N-serve treatment, and followed by urea and $KNO_3$ treatments. Addition of N-serve could effectively inhibit nitrification in the soil. In the treatment of $KNO_3$, relatively higher ${NO_3}^-$ concentration was found at 10 cm depth soil. In urea+N-serve treatment redox potential was lower than -100 mV during the experiment, but in the treatment of $KNO_3$ the potential was maintained above 0 mV until ${NO_3}^-$ remaining in soil solution. Reduction of Fe(III) and solubilization of P were highly correlated with redox potential changes in the three N fertilizer treatments. Concentrations of Fe(II) and ${PO_4}^{3-}$ in soil solution at 10 cm depth were much higher in the urea+N-serve treatment. The most vigorous rice seedling growth was found in the urea treatment. Although the availability of N and P in soil was enhanced in the urea+N-serve treatment through the suppression of nitrification, excessive solubilization of Fe could limit the growth of rice plants.