• Title/Summary/Keyword: $F_1$-ATPase of Escherichia coli

Search Result 10, Processing Time 0.018 seconds

31P NMR Spectroscopy Revealed Adenylate kinase-like Activity and Phosphotransferase-like Activity from F1-ATPase of Escherichia coli

  • Kim, Hyun-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.183-185
    • /
    • 2011
  • Adenylate kinase-like activity and phosphotransferase-like activity from $F_1$-ATPase of Escherichia coli was revealed by $^{31}P$ NMR spectroscopy. Incubation of F1-ATPase with ADP in the presence of $Mg^{2+}$ shows the appearance of $^{31}P$ resonances from AMP and Pi, suggesting generation of AMP and ATP by adenylate kinase-like activity and the subsequent hydrolysis to Pi. Incubation of $F_1$-ATPase with ADP in the presence of methanol shows additional peak from methyl phosphate, suggesting phosphotransferase-like activity of $F_1$-ATPase. Both adenylate kinase-like activity and phosphotransferase-like activity has not been reported from $F_1$-ATPase of Escherichia coli. $^{31}P$ NMR could be a valuable tool for the investigation of phosphorous related enzyme.

19F NMR Investigation of F1-ATPase of Escherichia coli Using Fluorinated Ligands

  • Jung, Seun-Ho;Kim, Hyun-Won
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.44-47
    • /
    • 1998
  • Asymmetry amongst nucleotide binding sites of Escherichia coli $F_1$-ATPase was examined using $^{19}F$ NMR signal from fluorinated analogs of adenine nucleotides bound to nucleotide binding sites. ADP-$CF_2-{PO_3}^{2-}$ showed no inhibitory effect to $F_1$-ATPase. But ADP-CHF-${PO_3}^{2-}$ (racemic mixture) showed competitive inhibition of $F_1$-ATPase with $K_i$ of $60\;{\mu}m$. ADP-CHF-${PO_3}^{2-}$ shows only negligible binding to $EF_1$ in the absence of $Mg^2+$. With the addition of $Mg^2+$ to the medium, the $^{19}F$ resonance of free ADP-CHF-${PO_3}^{2-}$ disappeared and the new broad resonances appeared. Appearance of more than two new asymmetric resonances following the binding of ADP-CHF-${PO_3}^{2-}$ to $EF_1$ may indicate that at least one of the isomers showed split resonances. This may suggest that the region between ${\alpha}$-and ${\beta}$-phosphate of ADP-CHF-${PO_3}^{2-}$ which is bound to catalytic sites is experiencing a different environment at different sites.

  • PDF

Phosphoryl Transferring Activity was Revealed from $F_1-ATPase$ of Escherichia coli by $^{31}P$ NMR Investigation

  • Sohn, Joon-Hyung;NamKung, Jun;Yoon, Joon-Ho;Woo, Mi-Kyoung;Yeh, Byung-Il;Choi, Jong-Whan;Kim, Hyun-Won
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.169-173
    • /
    • 2007
  • [ $^{31}PNMR$ ] spectroscopy revealed the adenylate kinase-like activity and the phosphotransferase activity from $F_1-ATPase$ of Escherichia coli. Incubation of $F_1-ATPase$ with ADP in the presence of $Mg^{2+}$ shows the appearance of $^{31}P$ resonances from AMP and Pi, suggesting the generation of AMP and ATP by adenylate kinase-like activity and the subsequent hydrolysis to Pi. Incubation of $F_1-ATPase$ with ADP in the presence of methanol shows additional peak from methyl phosphate, suggesting phosphotransferase activity of $F_1-ATPase$. Both adenylate kinase-like activity and the phosphotransferase activity has not been reported from $F_1-ATPase$ from Escherichia coli. $^{31}P$ NMR proved that it could be a valuable tool for the investigation of phosphorous related enzyme.

  • PDF

Observation of Asymmetry amongst Nucleotide Binding Sites of F1-ATPase of Escherichia coli by 31P NMR Spectroscopy

  • Jun, Nam-Kung;Sohn, Joon-Hyung;Yeh, Byung-Il;Choi, Jong-Whan;Kim, Hyun-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.531-535
    • /
    • 2011
  • It was regarded that the $^{31}P$ resonances of inherent nucleotides in $F_1$-ATPase (EF1), as large as 380KDa, could not be observed by $^{31}P$ NMR spectroscopy. However, our $^{31}P$ NMR spectroscopy could differentiate between different nucleotide binding sites on EF1 from Escherichia coli. When EF1 was prepared in the absence of $Mg^{2+}$, EF1 contained only ADP. Multiple $^{31}P$ resonances from $\beta$-phosphates of ADP bound to the EF1 were observed from the enzyme prepared without $Mg^{2+}$, suggesting asymmetry or flexibility amongst nucleotide binding sites. $^{31}P$ resonances from enzyme bound ATP could be observed only from EF1, when the enzyme was prepared in the presence of $Mg^{2+}$. This $Mg^{2+}$ dependent ATP binding was very tight that, once bound, nucleotide could not be removed even after removal of $Mg^{2+}$. $^{31}P$ NMR proved to be a valuable tool for investigating phosphorous related enzymes.

Effects of Some Metabolic Inhibitors on Phototactic Movement in Cyanobacterium Synechosystis sp. PCC 6803 PTX (람세균 Synechocystis sp. PCC 6803 PTX의 주광성 운동에 미치는 몇가지 대사 억제제의 효과)

  • 박영총
    • Journal of Plant Biology
    • /
    • v.38 no.1
    • /
    • pp.87-93
    • /
    • 1995
  • For understanding physiological nature of phototaxis in Synechocystis sp. PCC 6803 PTX(S. 6803 PTX), we examined the effects of some metabolic inhibitors and cation ionophore on the phototactic movement. In the presence of DCMU, which blocks the photosynthetic electron transport just after photosystem II acceptor, there was no inhibitory effect on the phototaxis up to $100\;\mu\textrm{M}$. Instead, the respiratory electron chain inhibitor such as sodium azide dramatically impaired the phototaxis in S. 6803 PTX. These observations indicate that the phototaxis is linked not to photo-phosphorylation, but to respiratory phosphorylation. When the cells were treated with un couplers such as CCCP or DNP, which dissipate the electrochemical gradient of proton($\Delta\mu_{H}+$) across the cytoplasmic membrane, these chemicals did not affect phototaxis. In contrast, when cells were treated with DCCD or NBD which deprive cells of A TP but leave $\Delta\mu_{H}+$ intact across the membrane, the phototactic movement was severly reduced. These results imply that ATP production, not proton motive force, is involved in the phototactic movement in this organism as a driving motive force. The application of specific calcium ionophore A23187 strongly impaired positive phototaxis. Calcium fluxes should be engaged in the sensory trans-duction of phototactic orientation. Finally, when ethionine was supplimented to culture media, the photomovement of this organism was inhibited. This implies that methylation/demethylation mechanism controls the process of phototaxis in S. 6803 PTX like chemotaxis in E. coli and Salmonella typhimurium.murium.

  • PDF